50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium–host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host–pathogen interactions and the control/prevention of infection.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: not found

          Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development.

          The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface in response to appropriate environmental signals. We report the isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic. These mutants are designated surface attachment defective (sad ). Two classes of sad mutants were analysed: (i) mutants defective in flagellar-mediated motility and (ii) mutants defective in biogenesis of the polar-localized type IV pili. We followed the development of the biofilm formed by the wild type over 8 h using phase-contrast microscopy. The wild-type strain first formed a monolayer of cells on the abiotic surface, followed by the appearance of microcolonies that were dispersed throughout the monolayer of cells. Using time-lapse microscopy, we present evidence that microcolonies form by aggregation of cells present in the monolayer. As observed with the wild type, strains with mutations in genes required for the synthesis of type IV pili formed a monolayer of cells on the PVC plastic. However, in contrast to the wild-type strain, the type IV pili mutants did not develop microcolonies over the course of the experiments, suggesting that these structures play an important role in microcolony formation. Very few cells of a non-motile strain (carrying a mutation in flgK) attached to PVC even after 8 h of incubation, suggesting a role for flagella and/or motility in the initial cell-to-surface interactions. The phenotype of these mutants thus allows us to initiate the dissection of the developmental pathway leading to biofilm formation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist.

              Pseudomonas aeruginosa is an ubiquitous pathogen capable of infecting virtually all tissues. A large variety of virulence factors contribute to its importance in burn wounds, lung infection and eye infection. Prominent factors include pili, flagella, lipopolysaccharide, proteases, quorum sensing, exotoxin A and exoenzymes secreted by the type III secretion system.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front. Microbio.
                Frontiers in Microbiology
                Frontiers Research Foundation
                1664-302X
                18 April 2011
                01 June 2011
                2011
                : 2
                : 118
                Affiliations
                [1] 1simpleDepartment of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
                Author notes

                Edited by: Dara Frank, Medical College of Wisconsin, USA

                Reviewed by: Robert Munson, Research Institute at Nationwide Children's Hospital, USA; Dennis Ohman, Virginia Commonwealth University Medical Center, USA

                *Correspondence: Joseph S. Lam, Department of Molecular and Cellular Biology, 50 Stone Road E., Guelph, ON, Canada N1G 2W1. e-mail: jlam@ 123456uoguelph.ca

                This article was submitted to Frontiers in Cellular and Infection Microbiology, a specialty of Frontiers in Microbiology.

                Article
                10.3389/fmicb.2011.00118
                3108286
                21687428
                99adacfb-d7ee-4bd3-b976-aa45cfcdcc04
                Copyright © 2011 Lam, Taylor, Islam, Hao and Kocíncová.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 21 March 2011
                : 12 May 2011
                Page count
                Figures: 7, Tables: 3, Equations: 0, References: 195, Pages: 25, Words: 22665
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                serotyping,seroconversion,biosynthesis,bacteriophage,motility,lipopolysaccharide,virulence,nucleotide sugars

                Comments

                Comment on this article