17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Electron spin echo envelope modulation spectroscopy supports the suggested coordination of two histidine ligands to the Rieske Fe-S centers of the cytochrome b6f complex of spinach and the cytochrome bc1 complexes of Rhodospirillum rubrum, Rhodobacter sphaeroides R-26, and bovine heart mitochondria.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Electron spin echo envelope modulation (ESEEM) experiments performed on the Rieske Fe-S clusters of the cytochrome b6f complex of spinach chloroplasts and of the cytochrome bc1 complexes of Rhodospirillum rubrum, Rhodobacter sphaeroides R-26, and bovine heart mitochondria show modulation components resulting from two distinct classes of 14N ligands. At the g = 1.92 region of the Rieske EPR spectrum of the cytochrome b6f complex, the measured hyperfine couplings for the two classes of coupled nitrogens are A1 = 4.6 MHz and A2 = 3.8 MHz. Similar couplings are observed for the Rieske centers in the three cytochrome bc1 complexes. These ESEEM results indicate a nitrogen coordination environment for these Rieske Fe-S centers that is similar to that of the Fe-S cluster of a bacterial dioxygenase enzyme with two coordinated histidine ligands [Gurbiel, R. J., Batie, C. J., Sivaraja, M., True, A. E., Fee, J. A., Hoffman, B. M., & Ballou, D. P. (1989) Biochemistry 28, 4861-4871]. The Rieske Fe-S cluster lacks modulation components from a weakly coupled peptide nitrogen observed in water-soluble spinach ferredoxin. Treatment with the quinone analogue inhibitor DBMIB causes a shift in the Rieske EPR spectrum to g = 1.95 with no alteration in the magnetic coupling to the two nitrogen atoms. However, the ESEEM pattern of the DBMIB-altered Rieske EPR signal shows evidence of an additional weakly coupled nitrogen similar to that observed in the spinach ferredoxin ESEEM patterns.

          Related collections

          Author and article information

          Journal
          Biochemistry
          Biochemistry
          0006-2960
          0006-2960
          Feb 19 1991
          : 30
          : 7
          Affiliations
          [1 ] Laboratory of Chemical Biodynamics, Lawrence Berkeley Laboratory, Berkeley, California 94720.
          Article
          1847076
          99b18048-8e27-452d-9b33-eb913d73e5ca
          History

          Comments

          Comment on this article