41
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Involvement of endoplasmic reticulum stress in formalin-induced pain is attenuated by 4-phenylbutyric acid

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Endoplasmic reticulum (ER) stress is involved in many neurological and inflammatory responses. Peripheral inflammatory responses can induce central sensitization and trigger inflammatory pain. However, there is little research on the relationship between ER stress and inflammatory pain. In this study, we examined whether the ER stress response is involved in peripheral inflammatory pain using a formalin-induced rat pain model.

          Methods

          Rats were divided into the following five groups: control, formalin, formalin + vehicle, formalin + 4-phenylbutyric acid (4-PBA) (40 mg/kg) and formalin + 4-PBA (100 mg/kg). Formalin-induced pain was assessed behaviorally by recording licking activity. The expression levels of immunoglobulin-binding protein (BIP), activating transcription factor-6 (ATF6), phosphorylated inositol-requiring enzyme-1 (p-IRE1), phosphorylated protein kinase RNA-like ER kinase (p-PERK) and c-fos were quantitatively assessed by Western blot, and the distribution of BIP, ATF6 and c-fos in the lumbar enlargement of spinal cord were identified by immunohistochemistry in spinal dorsal horn slices. In addition, the concentrations of nitric oxide (NO) and prostaglandin E2 (PGE2) in the spinal cord were tested by biochemical measurement and enzyme-linked immunosorbent assay (ELISA), respectively.

          Results

          Intraperitoneal injection of 4-PBA at the dose of 100 mg/kg before formalin injection significantly decreased nociceptive behavior in the second phase compared with control, formalin, formalin + vehicle and formalin + 4-PBA (40 mg/kg) ( P<0.05). Western blot showed that formalin injection significantly upregulated the expression of BIP, ATF6, p-PERK and c-fos in the spinal cord. This upregulation was reduced by peritoneal injection of 4-PBA ( P<0.05), while expression of p-IRE1 was not altered by formalin treatment. Immunohistochemistry revealed markedly increased staining density for BIP, ATF6 and c-fos in the superficial spinal dorsal horn after formalin injection. This was significantly decreased by administration of 4-PBA ( P<0.05). Compared with the formalin + vehicle group, 4-PBA inhibited the release of NO and PGE2 in the spinal cord ( P<0.05).

          Conclusion

          These results suggest that ER stress is involved in formalin-induced inflammatory pain and that inhibition of ER stress may attenuate central sensitization induced by peripheral inflammatory stimulation.

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats.

          A method for assessing pain and analgesia in rats and cats is described. The procedure involves subcutaneous injection of dilute formalin into the forepaw, after which the animal's responses are rated according to objective behavioral criteria. The formalin test is a statistically valid technique which has two advantages over other pain tests: (1) little or no restraint is necessary, permitting unhindered observation of the complete range of behavioral responses; and (2) the pain stimulus is continuous rather than transient, thus bearing greater resemblance to most clinical pain. The analgesic effects of morphine, meperidine, and stimulation of the periaqueductal grey matter are evaluated using this test.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Inflammation in gastric cancer: Interplay of the COX‐2/prostaglandin E2 and Toll‐like receptor/MyD88 pathways

            Cyclooxygenase‐2 (COX‐2) and its downstream product prostaglandin E2 (PGE2) play a key role in generation of the inflammatory microenvironment in tumor tissues. Gastric cancer is closely associated with Helicobacter pylori infection, which stimulates innate immune responses through Toll‐like receptors (TLRs), inducing COX‐2/PGE2 pathway through nuclear factor‐κB activation. A pathway analysis of human gastric cancer shows that both the COX‐2 pathway and Wnt/β‐catenin signaling are significantly activated in tubular‐type gastric cancer, and basal levels of these pathways are also increased in other types of gastric cancer. Expression of interleukin‐11, chemokine (C‐X‐C motif) ligand 1 (CXCL1), CXCL2, and CXCL5, which play tumor‐promoting roles through a variety of mechanisms, is induced in a COX‐2/PGE2 pathway‐dependent manner in both human and mouse gastric tumors. Moreover, the COX‐2/PGE2 pathway plays an important role in the maintenance of stemness with expression of stem cell markers, including CD44, Prom1, and Sox9, which are induced in both gastritis and gastric tumors through a COX‐2/PGE2‐dependent mechanism. In contrast, disruption of Myd88 results in suppression of the inflammatory microenvironment in gastric tumors even when the COX‐2/PGE2 pathway is activated, indicating that the interplay of the COX‐2/PGE2 and TLR/MyD88 pathways is needed for inflammatory response in tumor tissues. Furthermore, TLR2/MyD88 signaling plays a role in maintenance of stemness in normal stem cells as well as gastric tumor cells. Accordingly, these results suggest that targeting the COX‐2/PGE2 pathway together with TLR/MyD88 signaling, which would suppress the inflammatory microenvironment and maintenance of stemness, could be an effective preventive or therapeutic strategy for gastric cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease

              Mutations in PINK1 and PARKIN cause early-onset Parkinson's disease (PD), thought to be due to mitochondrial toxicity. Here, we show that in Drosophila pink1 and parkin mutants, defective mitochondria also give rise to endoplasmic reticulum (ER) stress signalling, specifically to the activation of the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the unfolded protein response (UPR). We show that enhanced ER stress signalling in pink1 and parkin mutants is mediated by mitofusin bridges, which occur between defective mitochondria and the ER. Reducing mitofusin contacts with the ER is neuroprotective, through suppression of PERK signalling, while mitochondrial dysfunction remains unchanged. Further, both genetic inhibition of dPerk-dependent ER stress signalling and pharmacological inhibition using the PERK inhibitor GSK2606414 were neuroprotective in both pink1 and parkin mutants. We conclude that activation of ER stress by defective mitochondria is neurotoxic in pink1 and parkin flies and that the reduction of this signalling is neuroprotective, independently of defective mitochondria. A video abstract for this article is available online in the supplementary information
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2017
                20 March 2017
                : 10
                : 653-662
                Affiliations
                [1 ]Department of Anesthesiology
                [2 ]Department of Pathology, Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
                Author notes
                Correspondence: Yaping Wang, Department of Anesthesiology, Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410000, Hunan, People’s Republic of China, Tel +86 731 8529 5970, Email wangyaping6568@ 123456126.com
                Article
                jpr-10-653
                10.2147/JPR.S125805
                5365334
                28360534
                99c33026-40d4-43aa-80f7-be1f95a58aaf
                © 2017 Zhou et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Anesthesiology & Pain management
                endoplasmic reticulum stress,formalin-induced pain,4-phenylbutyric acid,central sensitization

                Comments

                Comment on this article