6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sex chromosomes, recombination, and chromatin conformation

      ,
      Chromosoma
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression.

          DMC1 is a new meiosis-specific yeast gene. Dmc1 protein is structurally similar to bacterial RecA proteins. dmc1 mutants are defective in reciprocal recombination, accumulate double-strand break (DSB) recombination intermediates, fail to form normal synaptonemal complex (SC), and arrest late in meiotic prophase. dmc1 phenotypes are consistent with a functional relationship between Dmc1 and RecA, and thus eukaryotic and prokaryotic mechanisms for homology recognition and strand exchange may be related. dmc1 phenotypes provide further evidence that recombination and SC formation are interrelated processes and are consistent with a requirement for DNA-DNA interactions during SC formation. dmc1 mutations confer prophase arrest. Additional evidence suggests that arrest occurs at a meiosis-specific cell cycle "checkpoint" in response to a primary defect in prophase chromosome metabolism. DMC1 is homologous to yeast's RAD51 gene, supporting the view that mitotic DSB repair has been recruited for use in meiotic chromosome metabolism.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The population genetics of Drosophila transposable elements.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene.

              Phosphoglycerate kinase (PGK) (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3) is a metabolic enzyme functioning in the Embden-Meyerhof pathway that converts glucose (or fructose) to pyruvate. Two functional loci for the production of PGK have been identified in the mammalian genome. PGK-1 is an X-linked gene expressed constitutively in all somatic cells and premeitotic germ cells. The human PGK-1 gene consists of 11 exons and 10 introns encompassing a region approximately 23 kilobases (kb) in length. PGK-2 is an autosomal gene expressed in a tissue-specific manner exclusively in the late stages of spermatogenesis. In the present study, a molecular analysis of a human genomic clone of PGK-2 originally isolated by Szabo et al. has revealed that this autosomal sequence completely lacks introns and contains characteristics of a processed gene, or 'retroposon', including the remnants of a poly(A)+ tail and bounding direct repeats. Typically such processed sequences form non-functional pseudogenes that have evolved multiple genetic lesions which preclude translation of any transcript into a functional polypeptide. For example, an X-linked processed pseudogene of PGK-1 (psi PGK-1) in humans has been identified and shown to contain premature termination codons in all reading frames. It was therefore unexpected to find that the intronless autosomal PGK sequence reported here is not a pseudogene, but is rather a functional gene that has retained a complete open reading frame, and is actively expressed in mammalian spermatogenesis. Both the unusual conservation of function in this processed PGK-2 gene and its tissue-specific expression in spermatogenesis are best explained as a compensatory response to the inactivation of the X-linked PGK-1 gene in spermatogenic cells before meiosis.
                Bookmark

                Author and article information

                Journal
                Chromosoma
                Chromosoma
                Springer Nature
                0009-5915
                1432-0886
                January 1993
                January 1993
                : 102
                : 2
                : 71-80
                Article
                10.1007/BF00356023
                99c688b6-7dcc-44de-b0b9-6051090cbc56
                © 1993
                History

                Comments

                Comment on this article