Chemoprevention has been considered as a possible approach for cancer prevention. A significant effort has been made in the development of novel drugs for both cancer prevention and treatment over the past decade. Recent epidemiological studies and clinical trials indicate that long term use of aspirin and similar agents, also called non-steroidal anti-inflammatory drugs (NSAIDs), can decrease the incidence of certain malignancies, including colorectal, oesophageal, breast, lung, and bladder cancers. The best known targets of NSAIDs are cyclooxygenase (COX) enzymes, which convert arachidonic acid to prostaglandins (PGs) and thromboxane. COX-2 derived prostaglandin E(2)(PGE(2)) can promote tumour growth by binding its receptors and activating signalling pathways which control cell proliferation, migration, apoptosis, and/or angiogenesis. However, the prolonged use of high dosages of COX-2 selective inhibitors (COXIBs) is associated with unacceptable cardiovascular side effects. Thus it is crucial to develop more effective chemopreventive agents with minimal toxicity. Recent efforts to identify the molecular mechanisms by which PGE(2) promotes tumour growth and metastasis may provide opportunities for the development of safer strategies for cancer prevention and treatment.