49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Type I NADH Dehydrogenase of Mycobacterium tuberculosis Counters Phagosomal NOX2 Activity to Inhibit TNF-α-Mediated Host Cell Apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The capacity of infected cells to undergo apoptosis upon insult with a pathogen is an ancient innate immune defense mechanism. Consequently, the ability of persisting, intracellular pathogens such as the human pathogen Mycobacterium tuberculosis (Mtb) to inhibit infection-induced apoptosis of macrophages is important for virulence. The nuoG gene of Mtb, which encodes the NuoG subunit of the type I NADH dehydrogenase, NDH-1, is important in Mtb-mediated inhibition of host macrophage apoptosis, but the molecular mechanism of this host pathogen interaction remains elusive. Here we show that the apoptogenic phenotype of MtbΔ nuoG was significantly reduced in human macrophages treated with caspase-3 and -8 inhibitors, TNF-α-neutralizing antibodies, and also after infection of murine TNF −/− macrophages. Interestingly, incubation of macrophages with inhibitors of reactive oxygen species (ROS) reduced not only the apoptosis induced by the nuoG mutant, but also its capacity to increase macrophage TNF-α secretion. The MtbΔ nuoG phagosomes showed increased ROS levels compared to Mtb phagosomes in primary murine and human alveolar macrophages. The increase in MtbΔ nuoG induced ROS and apoptosis was abolished in NOX-2 deficient ( gp91 −/− ) macrophages. These results suggest that Mtb, via a NuoG-dependent mechanism, can neutralize NOX2-derived ROS in order to inhibit TNF-α-mediated host cell apoptosis. Consistently, an Mtb mutant deficient in secreted catalase induced increases in phagosomal ROS and host cell apoptosis, both of which were dependent upon macrophage NOX-2 activity. In conclusion, these results serendipitously reveal a novel connection between NOX2 activity, phagosomal ROS, and TNF-α signaling during infection-induced apoptosis in macrophages. Furthermore, our study reveals a novel function of NOX2 activity in innate immunity beyond the initial respiratory burst, which is the sensing of persistent intracellular pathogens and subsequent induction of host cell apoptosis as a second line of defense.

          Author Summary

          Mycobacterium tuberculosis, the causative agent of tuberculosis, is highly adapted to survive in macrophages of its human host. Host cell suicide is an ancient host cell defense mechanism employed by organisms to wall off invading pathogens. M. tuberculosis manipulates infected cells to inhibit host cell death but the molecular mechanism of this interaction has not been elucidated. Here we describe that M. tuberculosis uses an enzyme complex (NDH-1) usually needed for energy generation in order to neutralize the NOX-2 enzyme-mediated production of toxic oxygen radicals (ROS) by the host cell. We demonstrate that an M. tuberculosis mutant deficient in NDH-1 accumulates ROS inside the macrophage which induces the secretion of an inflammatory cytokine (TNF-α) and subsequent host cell death. The increase of ROS is dependent upon functional NOX-2, since host cells missing a NOX-2 component do not undergo cell death upon infection with the mutant. We propose that a novel function of the host cell NOX-2 complex is to allow sensing of intracellular pathogens by the host cell in order to commit suicide and thus limit bacterial survival.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases.

          TNFalpha is a pleiotropic cytokine that induces either cell proliferation or cell death. Inhibition of NF-kappaB activation increases susceptibility to TNFalpha-induced death, concurrent with sustained JNK activation, an important contributor to the death response. Sustained JNK activation in NF-kappaB-deficient cells was suggested to depend on reactive oxygen species (ROS), but how ROS affect JNK activation was unclear. We now show that TNFalpha-induced ROS, whose accumulation is suppressed by mitochondrial superoxide dismutase, cause oxidation and inhibition of JNK-inactivating phosphatases by converting their catalytic cysteine to sulfenic acid. This results in sustained JNK activation, which is required for cytochrome c release and caspase 3 cleavage, as well as necrotic cell death. Treatment of cells or experimental animals with an antioxidant prevents H(2)O(2) accumulation, JNK phosphatase oxidation, sustained JNK activity, and both forms of cell death. Antioxidant treatment also prevents TNFalpha-mediated fulminant liver failure without affecting liver regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice.

            Understanding the immunological mechanisms of protection and pathogenesis in tuberculosis remains problematic. We have examined the extent to which tumor necrosis factor-alpha (TNF alpha) contributes to this disease using murine models in which the action of TNF alpha is inhibited. TNF alpha was neutralized in vivo by monoclonal antibody; in addition, a mouse strain with a disruption in the gene for the 55 kDa TNF receptor was used. The data from both models established that TNF alpha and the 55 kDa TNF receptor are essential for protection against tuberculosis in mice, and for reactive nitrogen production by macrophages early in infection. Granulomas were formed in equal numbers in control and experimental mice, but necrosis was observed only in mice deficient in TNF alpha or TNF receptor. TNF alpha and the 55 kDa TNF receptor are necessary conditions for protection against murine M. tuberculosis infection, but are not solely responsible for the tissue damage observed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis.

              The persistence of Mycobacterium tuberculosis despite prolonged chemotherapy represents a major obstacle for the control of tuberculosis. The mechanisms used by Mtb to persist in a quiescent state are largely unknown. Chemical genetic and genetic approaches were used here to study the physiology of hypoxic nonreplicating mycobacteria. We found that the intracellular concentration of ATP is five to six times lower in hypoxic nonreplicating Mtb cells compared with aerobic replicating bacteria, making them exquisitely sensitive to any further depletion. We show that de novo ATP synthesis is essential for the viability of hypoxic nonreplicating mycobacteria, requiring the cytoplasmic membrane to be fully energized. In addition, the anaerobic electron transport chain was demonstrated to be necessary for the generation of the protonmotive force. Surprisingly, the alternate ndh-2, but not -1, was shown to be the electron donor to the electron transport chain and to be essential to replenish the [NAD(+)] pool in hypoxic nonreplicating Mtb. Finally, we describe here the high bactericidal activity of the F(0)F(1) ATP synthase inhibitor R207910 on hypoxic nonreplicating bacteria, supporting the potential of this drug candidate for shortening the time of tuberculosis therapy.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                April 2010
                April 2010
                22 April 2010
                : 6
                : 4
                : e1000864
                Affiliations
                [1 ]Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
                [2 ]Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
                [3 ]Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
                University of New Mexico, United States of America
                Author notes
                [¤]

                Current address: AERAS TB Foundation, Rockville, Maryland, United States of America

                Conceived and designed the experiments: JLM KV VB. Performed the experiments: KV. Analyzed the data: JLM VB. Contributed reagents/materials/analysis tools: MJC. Wrote the paper: JLM VB.

                Article
                09-PLPA-RA-1488R3
                10.1371/journal.ppat.1000864
                2858756
                20421951
                99d2b409-c8da-47d7-aab9-a2c513bca75f
                Miller et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 August 2009
                : 18 March 2010
                Page count
                Pages: 14
                Categories
                Research Article
                Cell Biology/Cellular Death and Stress Responses
                Immunology/Cellular Microbiology and Pathogenesis
                Immunology/Immunity to Infections
                Immunology/Innate Immunity
                Infectious Diseases/Bacterial Infections
                Microbiology/Cellular Microbiology and Pathogenesis
                Microbiology/Innate Immunity

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article