13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quaternary range dynamics of ecologically divergent species (Edraianthus serpyllifolius and E. tenuifolius, Campanulaceae) within the Balkan refugium : Quaternary range dynamics within the Balkan refugium

      , ,
      Journal of Biogeography
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Universal primers for amplification of three non-coding regions of chloroplast DNA.

          Six primers for the amplification of three non-coding regions of chloroplast DNA via the polymerase chain reaction (PCR) have been designed. In order to find out whether these primers were universal, we used them in an attempt to amplify DNA from various plant species. The primers worked for most species tested including algae, bryophytes, pteridophytes, gymnosperms and angiosperms. The fact that they amplify chloroplast DNA non-coding regions over a wide taxonomic range means that these primers may be used to study the population biology (in supplying markers) and evolution (inter- and probably intraspecific phylogenies) of plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conserving biodiversity under climate change: the rear edge matters.

            Modern climate change is producing poleward range shifts of numerous taxa, communities and ecosystems worldwide. The response of species to changing environments is likely to be determined largely by population responses at range margins. In contrast to the expanding edge, the low-latitude limit (rear edge) of species ranges remains understudied, and the critical importance of rear edge populations as long-term stores of species' genetic diversity and foci of speciation has been little acknowledged. We review recent findings from the fossil record, phylogeography and ecology to illustrate that rear edge populations are often disproportionately important for the survival and evolution of biota. Their ecological features, dynamics and conservation requirements differ from those of populations in other parts of the range, and some commonly recommended conservation practices might therefore be of little use or even counterproductive for rear edge populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How to track and assess genotyping errors in population genetics studies.

              Genotyping errors occur when the genotype determined after molecular analysis does not correspond to the real genotype of the individual under consideration. Virtually every genetic data set includes some erroneous genotypes, but genotyping errors remain a taboo subject in population genetics, even though they might greatly bias the final conclusions, especially for studies based on individual identification. Here, we consider four case studies representing a large variety of population genetics investigations differing in their sampling strategies (noninvasive or traditional), in the type of organism studied (plant or animal) and the molecular markers used [microsatellites or amplified fragment length polymorphisms (AFLPs)]. In these data sets, the estimated genotyping error rate ranges from 0.8% for microsatellite loci from bear tissues to 2.6% for AFLP loci from dwarf birch leaves. Main sources of errors were allelic dropouts for microsatellites and differences in peak intensities for AFLPs, but in both cases human factors were non-negligible error generators. Therefore, tracking genotyping errors and identifying their causes are necessary to clean up the data sets and validate the final results according to the precision required. In addition, we propose the outline of a protocol designed to limit and quantify genotyping errors at each step of the genotyping process. In particular, we recommend (i) several efficient precautions to prevent contaminations and technical artefacts; (ii) systematic use of blind samples and automation; (iii) experience and rigor for laboratory work and scoring; and (iv) systematic reporting of the error rate in population genetics studies.
                Bookmark

                Author and article information

                Journal
                Journal of Biogeography
                Wiley-Blackwell
                03050270
                July 2011
                July 25 2011
                : 38
                : 7
                : 1381-1393
                Article
                10.1111/j.1365-2699.2011.02493.x
                99e2964d-475d-407d-9cdf-92b5b4b5a795
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article