4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mutations in the Vasopressin Prohormone Involved in Diabetes Insipidus Impair Endoplasmic Reticulum Export but Not Sorting

      , ,
      Journal of Biological Chemistry
      American Society for Biochemistry & Molecular Biology (ASBMB)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Defective protein folding as a basis of human disease.

          The ability of a polypeptide to fold into a unique, functional, three-dimensional structure in vivo is dependent upon its amino acid sequence and the function of molecular chaperone proteins and enzymes that catalyse folding. Intense study of the physical chemistry and cell biology of folding have greatly aided our understanding of the mechanisms normally employed. Evidence is accumulating that many disease-causing mutations and modifications exert their effects by altering protein folding. Here we discuss the pathobiology of these processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, Furin, and Kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2.

            Using a 796-basepair cDNA fragment obtained from a mouse pituitary library we have screened two mouse insulinoma libraries and isolated a full-length cDNA clone (2516 basepairs; 753 amino acids), designated mPC1. The cDNA sequence of mPC1 codes for a protein containing 753 amino acids and three potential N-glycosylation sites. This cDNA encodes a putative novel subtilisin-like proteinase, exhibiting within its presumed catalytic domain 64%, 55%, and 47% amino acid sequence identity to the recently characterized candidate prohormone convertases human Furin, mouse PC2, and yeast Kex2 gene products, respectively. An identical sequence to mPC1 was derived from a cDNA library of mouse corticotroph AtT-20 tumor cells. An ArgGlyAsp tripeptide identical to the recognition sequence of integrins was observed in the structures of the mammalian PC1, PC2, and Furin. In situ hybridization results demonstrated a distinct localization of the mPC1 and mPC2 transcripts in pituitary and brain. Thus, whereas both mPC1 and mPC2 are found in the intermediate lobe of the pituitary, only mPC1 is easily detected in the anterior lobe. In extrahypothalamic regions of the brain, including cortex, hippocampus, thalamus, and spinal cord, mPC2 transcripts predominate over mPC1. Both mRNAs are found in only a fraction of hypothalamic neurons, with greater abundance of mPC1 over mPC2 in the supraoptic nucleus. The genes coding for mPC1 and mPC2 map to the murine chromosomes 13 (band 13c) and 2 (2F3-2H2 region), respectively.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Degradation of a Mutant Secretory Protein, α1-Antitrypsin Z, in the Endoplasmic Reticulum Requires Proteasome Activity

                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                July 23 1999
                July 23 1999
                July 23 1999
                July 23 1999
                : 274
                : 30
                : 21200-21208
                Article
                10.1074/jbc.274.30.21200
                99e4b22c-9af0-40c9-a63f-16d94ef1ef0a
                © 1999
                History

                Comments

                Comment on this article