28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Unwell: The Public Health Implications of Unregulated Drinking Water

      article-commentary
      Environmental Health Perspectives
      Environmental Health Perspectives

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Roughly one in seven U.S. residents relies on a private well for drinking water.1 Unlike the rest of the population served by the nation’s many public water systems,2 these 44.5 million Americans are not protected by the federal Safe Drinking Water Act,3 which regulates 87 biological and chemical contaminants.4 This has significant implications for public health, according to the authors of a new review in Environmental Health Perspectives,5 and although solutions exist for ensuring that well water is safe to drink, it is unclear how and whether they can be implemented. At best, private wells receive minimal oversight from local and state authorities, such as limited testing upon installation and, in some states, when properties change hands, write authors Jacqueline MacDonald Gibson of the University of North Carolina at Chapel Hill and Kelsey Pieper of Virginia Polytechnic Institute and State University. Many wells escape regulation altogether, leaving the onus entirely on individuals to screen for pollutants and to mitigate them when they are discovered.6 Although precise statistics are not available, most well owners do not perform or pay for recommended tests at regular intervals, MacDonald Gibson says. This neglect is partly due to a simple lack of knowledge: “A lot of people assume that if their water looks and tastes okay, that the water is safe,” she says. But common contaminants such as bacteria, arsenic, and nitrate are colorless, odorless, and tasteless, and they can easily go undetected.7 , 8 , 9 Cost can be another barrier to keeping well water safe. Testing for volatile organic compounds, pesticides, metals, nitrate, bacteria, and radioactive contaminants could exceed $500, says Lynda Knobeloch, a former toxicologist with the Wisconsin Department of Health Services who was not involved with the paper. Effective in-home filters can cost hundreds to thousands of dollars, and well replacement can cost $10,000 or more, Knobeloch says. Furthermore, in some states, including Wisconsin, well contamination must be disclosed upon the sale of the home, providing an additional disincentive for some homeowners to ever test at all. This poorly constructed and largely unprotected well tested high for fecal coliforms. But even a state-of-the-art well can produce unsafe water without routine maintenance, testing, and treatment when necessary. Having a septic system nearby only increases the risk. Image: © Bryan Swistock/Pennsylvania State University. Photograph of a rural well Many people who use private wells are left potentially exposed to harmful pollutants. In a 2013 study of nearly 4,000 private wells in rural Wisconsin, for example, Knobeloch found that 47% exceeded at least one health-based water quality standard.10 And a recent study in North Carolina led by MacDonald Gibson found that between 2007 and 2013, 99% of emergency department visits for acute gastrointestinal illness caused by microbial contamination of drinking water were associated with private wells.11 The new review focused on North Carolina, where 35% of the population relies on private wells (the third most of any state),3 and 3.2 million people live in rural areas (the second most of any state).12 Furthermore, a history of racial segregation and what is known as “municipal underbounding”—in which expanding cities engulf poor and minority communities without affording them city services—has left many black residents of North Carolina’s periurban areas without access to public water systems, even if adjacent newer neighborhoods are fully connected.13 Because underbounded communities often also lack sewer service, the authors suggest that residents run the risk of contaminating their own water with fecal organisms, particularly in higher-density areas. “There are little pockets of people with old and failing septic systems in their backyard and a well nearby, and there may be a water line across the street,” says MacDonald Gibson. To help address these challenges in North Carolina and beyond, the Research Triangle Environmental Health Collaborative, an alliance of government, academic, industry, and public-interest groups, held a two-day summit in October 2015. The new review outlines findings and recommendations from this summit, which include developing a state database of private well locations, funding studies to identify areas underserved by municipal water and sewer systems, and providing additional support and resources to individuals for monitoring and maintenance. Knobeloch says the recommendations are sensible, if not necessarily innovative. A number of these recommendations have already been embraced by states including New York and Minnesota, whereas others, such as fully annexing underserved communities to extend city services, are unlikely to work for political and economic reasons. One additional improvement she believes should have been included is discouraging the development of new communities without central sewer and water systems. “You can prevent more of the problems you already have,” she says. The review highlights important and in some cases universal challenges with private wells, says Bryan Swistock of Pennsylvania State University, who has studied water resources and well water quality extensively in his home state and was not involved in the review. “It agrees so much with what we’ve seen here over thirty years,” he says. “There needs to be a better recognition that private water wells are a really critical part of the nation’s infrastructure. But they are mostly ignored by the government because they are viewed as a private property issue.”

          Related collections

          Most cited references3

          • Record: found
          • Abstract: not found
          • Article: not found

          Municipal Underbounding: Annexation and Racial Exclusion in Small Southern Towns

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Private drinking water quality in rural Wisconsin.

            Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reducing Emergency Department Visits for Acute Gastrointestinal Illnesses in North Carolina (USA) by Extending Community Water Service

              Background: Previous analyses have suggested that unregulated private drinking water wells carry a higher risk of exposure to microbial contamination than regulated community water systems. In North Carolina, ~35% of the state’s population relies on private wells, but the health impact associated with widespread reliance on such unregulated drinking water sources is unknown. Objectives: We estimated the total number of emergency department visits for acute gastrointestinal illness (AGI) attributable to microbial contamination in private wells in North Carolina per year, the costs of those visits, and the potential health benefits of extending regulated water service to households currently relying on private wells for their drinking water. Methods: We developed a population intervention model using 2007–2013 data from all 122 North Carolina emergency departments along with microbial contamination data for all 2,120 community water systems and for 16,138 private well water samples collected since 2008. Results: An estimated 29,400 (95% CI: 26,600, 32,200) emergency department visits per year for acute gastrointestinal illness were attributable to microbial contamination in drinking water, constituting approximately 7.3% (95% CI: 6.6, 7.9%) of all AGI-related visits. Of these attributable cases, 99% (29,200; 95% CI: 26,500, 31,900) were associated with private well contamination. The estimated statewide annual cost of emergency department visits attributable to microbiological contamination of drinking water is 40.2 million USD (95% CI: 2.58 million USD, 193 million USD), of which 39.9 million USD (95% CI: 2.56 million USD, 192 million USD) is estimated to arise from private well contamination. An estimated 2,920 (95% CI: 2,650, 3,190) annual emergency department visits could be prevented by extending community water service to 10% of the population currently relying on private wells. Conclusions: This research provides new evidence that extending regulated community water service to populations currently relying on private wells may decrease the population burden of acute gastrointestinal illness. Citation: DeFelice NB, Johnston JE, Gibson JM. 2016. Reducing emergency department visits for acute gastrointestinal illnesses in North Carolina (USA) by extending community water service. Environ Health Perspect 124:1583–1591; http://dx.doi.org/10.1289/EHP160
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                Environmental Health Perspectives
                0091-6765
                1552-9924
                01 November 2017
                November 2017
                : 125
                : 11
                : 114001
                Article
                EHP2470
                10.1289/EHP2470
                5947955
                29095690
                99ed3568-56d6-451d-9759-aae1c1039a8f

                EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted.

                History
                : 06 July 2017
                : 06 July 2017
                Categories
                Science Selection

                Public health
                Public health

                Comments

                Comment on this article