15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plant-Derived Products as Antibacterial and Antifungal Agents in Human Health Care

      1 , 2 , 1 , 2
      Current Medicinal Chemistry
      Bentham Science Publishers Ltd.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          :

          A number of papers reporting antimicrobial properties of extracts, essential oils, resins and various classes of compounds isolated from higher plants have been published in recent years; however, a comprehensive analysis of plant-derived antimicrobial agents currently applied in practice for the improvement of human health is still lacking. This review summarizes data on clinical efficacy, antimicrobial effects and the chemistry of commercially available antibacterial and antifungal agents of plant origin currently used in the prevention and treatment of gastrointestinal, oral, respiratory, skin, and urinary infections. As a result of an analysis of the literature, more than 40 plant-derived over-the-counter pharmaceuticals, dietary supplements, cosmetics, herbal medicines, and functional foods containing complex mixtures (e.g. Glycyrrhiza glabra extract, Melaleuca alternifolia essential oil, and Pistacia lentiscus resin), pure compounds (e.g. benzoic acid, berberine, eucalyptol, salicylic acid and thymol) as well as their derivatives and complexes (e.g. bismuth subsalicylate and zinc pyrithione) have been identified. The effectiveness of many of these products is illustrated by results of clinical trials and supported by data on there in vitro antimicrobial activity. A broad spectrum of various commercial products currently available on the market and their welldocumented clinical efficacy suggests that plants are prospective sources for the identification of new types of antimicrobial agents in future. Innovative approaches and methodologies for effective proof-of-concept research and the development of new types of plant-derived products effective against recently emerging problems related to human microbial diseases (e.g. antimicrobial resistance) are also proposed in this review.

          Related collections

          Most cited references283

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial activity of flavonoids

          Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement. In addition, numerous research groups have sought to elucidate the antibacterial mechanisms of action of selected flavonoids. The activity of quercetin, for example, has been at least partially attributed to inhibition of DNA gyrase. It has also been proposed that sophoraflavone G and (−)-epigallocatechin gallate inhibit cytoplasmic membrane function, and that licochalcones A and C inhibit energy metabolism. Other flavonoids whose mechanisms of action have been investigated include robinetin, myricetin, apigenin, rutin, galangin, 2,4,2′-trihydroxy-5′-methylchalcone and lonchocarpol A. These compounds represent novel leads, and future studies may allow the development of a pharmacologically acceptable antimicrobial agent or class of agents.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant products as antimicrobial agents.

              The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and "leads" which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations.
                Bookmark

                Author and article information

                Journal
                Current Medicinal Chemistry
                CMC
                Bentham Science Publishers Ltd.
                09298673
                October 26 2019
                October 26 2019
                : 26
                : 29
                : 5501-5541
                Affiliations
                [1 ]Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
                [2 ]Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
                Article
                10.2174/0929867325666180831144344
                30182844
                99f6111c-803a-4d1d-b831-72976c23be2c
                © 2019
                History

                Comments

                Comment on this article