1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Artificial Intelligence-Guided De Novo Molecular Design Targeting COVID-19

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An extensive search for active therapeutic agents against the SARS-CoV-2 is being conducted across the globe. While computational docking simulations remain a popular method of choice for the in silico ligand design and high-throughput screening of therapeutic agents, it is severely limited in the discovery of new candidate ligands owing to the high computational cost and vast chemical space. Here, we present a de novo molecular design strategy that leverages artificial intelligence (AI) to discover new therapeutic agents against SARS-CoV-2. A Monte Carlo tree search algorithm combined with a multitask neural network surrogate model for expensive docking simulations, and recurrent neural networks for rollouts, is used in an iterative search and retrain strategy. Using Vina scores as the target objective to measure binding to either the isolated spike protein (S-protein) at its host receptor region or to the S-protein/angiotensin converting enzyme 2 receptor interface, we generate several (∼100’s) new therapeutic agents that outperform Food and Drug Administration (FDA) (∼1000’s) and non-FDA molecules (∼million). Our AI strategy is broadly applicable for accelerated design and discovery of chemical molecules with any user-desired functionality.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.

          AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user. Copyright 2009 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Open Babel: An open chemical toolbox

            Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ZINC 15 – Ligand Discovery for Everyone

              Many questions about the biological activity and availability of small molecules remain inaccessible to investigators who could most benefit from their answers. To narrow the gap between chemoinformatics and biology, we have developed a suite of ligand annotation, purchasability, target, and biology association tools, incorporated into ZINC and meant for investigators who are not computer specialists. The new version contains over 120 million purchasable “drug-like” compounds – effectively all organic molecules that are for sale – a quarter of which are available for immediate delivery. ZINC connects purchasable compounds to high-value ones such as metabolites, drugs, natural products, and annotated compounds from the literature. Compounds may be accessed by the genes for which they are annotated as well as the major and minor target classes to which those genes belong. It offers new analysis tools that are easy for nonspecialists yet with few limitations for experts. ZINC retains its original 3D roots – all molecules are available in biologically relevant, ready-to-dock formats. ZINC is freely available at http://zinc15.docking.org.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                04 May 2021
                18 May 2021
                : 6
                : 19
                : 12557-12566
                Affiliations
                []Center for Nanoscale Materials, Argonne National Laboratory , Lemont, Illinois 60439, United States
                []Dalzielfiver LLC , 3500 Carlfield Street, El Sobrante, California 94803, United States
                [§ ]Advanced Photon Source, Argonne National Laboratory , Lemont, Illinois 60439, United States
                []Department of Mechanical and Industrial Engineering, University of Illinois , Chicago, Illinois 60607, United States
                Author notes
                [* ]Email: skrssank@ 123456uic.edu , skrssank@ 123456anl.gov . Phone: +1 (312) 355-6770.
                Author information
                http://orcid.org/0000-0003-2493-1291
                http://orcid.org/0000-0002-1098-7035
                http://orcid.org/0000-0002-8198-7737
                http://orcid.org/0000-0002-1475-6998
                http://orcid.org/0000-0002-9708-396X
                Article
                10.1021/acsomega.1c00477
                8154149
                34056406
                99ff4c8b-5362-4e2c-b103-3c84f1b8bd64
                © 2021 The Authors. Published by American Chemical Society

                Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works ( https://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 26 January 2021
                : 18 February 2021
                Funding
                Funded by: Basic Energy Sciences, doi 10.13039/100006151;
                Award ID: DE-SC0020201
                Funded by: University of Illinois at Chicago, doi 10.13039/100008522;
                Award ID: NA
                Categories
                Article
                Custom metadata
                ao1c00477
                ao1c00477

                Comments

                Comment on this article