42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trichinella spiralis Paramyosin Binds to C8 and C9 and Protects the Tissue-Dwelling Nematode from Being Attacked by Host Complement

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Paramyosin is a thick myofibrillar protein found exclusively in invertebrates. Evidence suggested that paramyosin from helminths serves not only as a structural protein but also as an immunomodulatory agent. We previously reported that recombinant Trichinella spiralis paramyosin ( Ts-Pmy) elicited a partial protective immunity in mice. In this study, the ability of Ts-Pmy to bind host complement components and protect against host complement attack was investigated.

          Methods and Findings

          In this study, the transcriptional and protein expression levels of Ts-Pmy were determined in T. spiralis newborn larva (NBL), muscle larva (ML) and adult worm developmental stages by RT-PCR and western blot analysis. Expression of Ts-Pmy at the outer membrane was observed in NBL and adult worms using immunogold electron microscopy and immunofluorescence staining. Functional analysis revealed that recombinant Ts-Pmy(r Ts-Pmy) strongly bound to complement components C8 and C9 and inhibited the polymerization of C9 during the formation of the membrane attack complex (MAC). r Ts-Pmy also inhibited the lysis of rabbit erythrocytes (E R) elicited by an alternative pathway-activated complement from guinea pig serum. Inhibition of native Ts-Pmy on the surface of NBL with a specific antiserum reduced larvae viability when under the attack of complement in vitro. In vivo passive transfer of anti- Ts-Pmy antiserum and complement-treated larvae into mice also significantly reduced the number of larvae that developed to ML.

          Conclusion

          These studies suggest that the outer membrane form of T. spiralis paramyosin plays an important role in the evasion of the host complement attack.

          Author Summary

          Trichinellosis is a serious food borne parasitic disease caused by the consumption of meat contaminated with the infective larvae of Trichinella spiralis. The ability of the tissue-dwelling parasite to evade the host complement attack is essential for its survival and for establishing infection in the host. This study describes the expression of paramyosin, a muscular protein in invertebrates, on the surface of Trichinella spiralis and its role in the defense against the host complement attack as a survival strategy. Using a specific antiserum, expression of Trichinella spiralis paramyosin was detected on the outer membrane of the adult worms and newborn larvae. Functional analysis revealed that recombinant Trichinella spiralis paramyosin protein strongly bound human complement components C8 and C9 and inhibited the formation of the complement membrane attack complex. Neutralization with a specific antiserum greatly impaired the protective effect of paramyosin on the viability and infectivity of Trichinella spiralis newborn larva when under attack by complement. These studies suggest that the outer membrane form of Trichinella spiralis paramyosin plays an important role in the evasion of the host complement attack and is therefore a good target for vaccine and pharmaceutical development.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Hosts and habitats of Trichinella spiralis and Trichinella britovi in Europe.

          Trichinella spiralis and Trichinella britovi are the two most common species of Trichinella circulating in Europe. Based on data provided to the International Trichinella Reference Centre over the past 20 years (data referring to 540 isolates of T. spiralis and 776 isolates of T. britovi), we describe the host species and habitat characteristics for these two pathogens in Europe. A Geographical Information System was constructed using administrative boundaries, a Corine Land Cover (CLC) map, and an elevation map. In most countries, T. britovi is more widespread (62.5-100% of the isolates) than T. spiralis (0.0-37.5%), although in Finland, Germany, Poland and Spain, T. spiralis is more prevalent (56.3-84.2% of the isolates). Trichinella britovi is more widespread than T. spiralis in sylvatic carnivores (89% versus 11%), whereas T. spiralis is prevalent in both wild boars (62% versus 38%) and domestic swine (82% versus 18%), as well as in rodents (75% versus 25%). Trichinella spiralis and T. britovi circulate in the same environments: 41.1% and 46.0%, respectively, in agricultural areas, and 45.5% and 46.6% in forested and semi-natural areas. Although both pathogens can be transmitted by domestic and sylvatic cycles, their epidemiology is strongly influenced by the higher adaptability of T. spiralis to swine and of T. britovi to carnivores. These results are important because they include information on the countries at risk for these pathogens, the role played by specific species as reservoirs, the role of the pathogens in domestic and sylvatic cycles, and the role of the habitat in their circulation. The results can also be used to identify the most suitable animal species for the monitoring of these pathogens in Europe.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oral vaccination with Ts87 DNA vaccine delivered by attenuated Salmonella typhimurium elicits a protective immune response against Trichinella spiralis larval challenge.

            We have previously reported that Ts87 is an immunodominant antigen that induces protective immunity against Trichinella spiralis larval challenge. In this study, the Ts87 gene was cloned into an expression plasmid, pVAX1, and the recombinant Ts87 DNA was transformed into attenuated Salmonella typhimurium strain SL7207. Oral immunization of mice with Ts87 DNA delivered in S. typhimurium elicited a significant local mucosal IgA response and a systemic Th1/Th2 immune response. Cytokine profiling also showed a significant increase in the Th1 (IFN-gamma) and Th2 (IL-5, 6, 10) responses in splenocytes of immunized mice upon stimulation with Ts87 antigen. An immunofluorescence assay performed with antisera revealed that the recombinant Ts87 protein was expressed in mesenteric lymph nodes of immunized mice. The mice immunized with Salmonella-delivered Ts87 DNA displayed a statistically significant 29.8% reduction in adult worm burden and a 34.2% reduction in muscle larvae following challenge with T. spiralis larvae, compared with mice immunized with empty Salmonella or a PBS control. Our results demonstrate that Ts87 DNA delivered by attenuated live S. typhimurium elicits a local IgA response and a balanced Th1/Th2 immune response and produces partial protection against T. spiralis infection in mice. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Receptor for Fc on the surfaces of schistosomes.

              Schistosoma mansoni masks its surface with adsorbed host proteins including erythrocyte antigens, immunoglobulins, major histocompatibility complex class I, and beta(2)-microglobulin (beta(2)m), presumably as a means of avoiding host immune responses. How this is accomplished has not been explained. To identify surface receptors for host proteins, we biotinylated the tegument of live S. mansoni adults and mechanically transformed schistosomula and then removed the parasite surface with detergent. Incubation of biotinylated schistosome surface extracts with human immunoglobulin G (IgG) Fc-Sepharose resulted in purification of a 97-kDa protein that was subsequently identified as paramyosin (Pmy), using antiserum specific for recombinant Pmy. Fc also bound recombinant S. mansoni Pmy and native S. japonicum Pmy. Antiserum to Pmy decreased the binding of Pmy to Fc-Sepharose, and no proteins bound after removal of Pmy from extracts. Fluoresceinated human Fc bound to the surface, vestigial penetration glands, and nascent oral cavity of mechanically transformed schistosomula, and rabbit anti-Pmy Fab fragments ablated the binding of Fc to the schistosome surface. Pmy coprecipitated with host IgG from parasite surface extracts, indicating that complexes formed on the parasite surface as well as in vitro. Binding of Pmy to Fc was not inhibited by soluble protein A, suggesting that Pmy does not bind to the region between the CH2 and CH3 domains used by many other Fc-binding proteins. beta(2)m did not bind to the schistosome Fc receptor (Pmy), a finding that contradicts reports from earlier workers but did bind to a heteromultimer of labeled schistosomula surface proteins. This is the first report of the molecular identity of a schistosome Fc receptor; moreover it demonstrates an additional aspect of the unusual and multifunctional properties of Pmy from schistosomes and other parasitic flatworms.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                July 2011
                5 July 2011
                : 5
                : 7
                : e1225
                Affiliations
                [1]Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
                Instituto Butantan, Brazil
                Author notes

                Conceived and designed the experiments: XZ ZZ JY. Performed the experiments: ZZ YY XC. Analyzed the data: ZZ XC. Contributed reagents/materials/analysis tools: ZZ JW XZ YG SC. Wrote the paper: ZZ XZ.

                Article
                PNTD-D-11-00040
                10.1371/journal.pntd.0001225
                3130009
                21750743
                9a08c676-8a23-471e-b665-4c4c00675438
                Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 January 2011
                : 20 May 2011
                Page count
                Pages: 9
                Categories
                Research Article
                Medicine
                Infectious Diseases
                Parasitic Diseases
                Trichinellosis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article