4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      More is Better: Precise and Detailed Image Captioning Using Online Positive Recall and Missing Concepts Mining

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Show and tell: A neural image caption generator

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Speech Recognition with Deep Recurrent Neural Networks

            Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where the input-output alignment is unknown. The combination of these methods with the Long Short-term Memory RNN architecture has proved particularly fruitful, delivering state-of-the-art results in cursive handwriting recognition. However RNN performance in speech recognition has so far been disappointing, with better results returned by deep feedforward networks. This paper investigates \emph{deep recurrent neural networks}, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs. When trained end-to-end with suitable regularisation, we find that deep Long Short-term Memory RNNs achieve a test set error of 17.7% on the TIMIT phoneme recognition benchmark, which to our knowledge is the best recorded score.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient kNN Classification With Different Numbers of Nearest Neighbors

              nearest neighbor (kNN) method is a popular classification method in data mining and statistics because of its simple implementation and significant classification performance. However, it is impractical for traditional kNN methods to assign a fixed value (even though set by experts) to all test samples. Previous solutions assign different values to different test samples by the cross validation method but are usually time-consuming. This paper proposes a kTree method to learn different optimal values for different test/new samples, by involving a training stage in the kNN classification. Specifically, in the training stage, kTree method first learns optimal values for all training samples by a new sparse reconstruction model, and then constructs a decision tree (namely, kTree) using training samples and the learned optimal values. In the test stage, the kTree fast outputs the optimal value for each test sample, and then, the kNN classification can be conducted using the learned optimal value and all training samples. As a result, the proposed kTree method has a similar running cost but higher classification accuracy, compared with traditional kNN methods, which assign a fixed value to all test samples. Moreover, the proposed kTree method needs less running cost but achieves similar classification accuracy, compared with the newly kNN methods, which assign different values to different test samples. This paper further proposes an improvement version of kTree method (namely, k*Tree method) to speed its test stage by extra storing the information of the training samples in the leaf nodes of kTree, such as the training samples located in the leaf nodes, their kNNs, and the nearest neighbor of these kNNs. We call the resulting decision tree as k*Tree, which enables to conduct kNN classification using a subset of the training samples in the leaf nodes rather than all training samples used in the newly kNN methods. This actually reduces running cost of test stage. Finally, the experimental results on 20 real data sets showed that our proposed methods (i.e., kTree and k*Tree) are much more efficient than the compared methods in terms of classification tasks.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Image Processing
                IEEE Trans. on Image Process.
                Institute of Electrical and Electronics Engineers (IEEE)
                1057-7149
                1941-0042
                January 2019
                January 2019
                : 28
                : 1
                : 32-44
                Article
                10.1109/TIP.2018.2855415
                9a162354-fc6b-424e-9e39-97c1abbd180d
                © 2019
                History

                Comments

                Comment on this article