17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Northern Trek: The Spread of Ixodes scapularis into Canada

      article-commentary
      Environmental Health Perspectives
      Environmental Health Perspectives

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For a decade Nicholas Ogden, a researcher at the National Microbiology Laboratory of the Public Health Agency of Canada, has tracked the northern expansion of the deer tick (Ixodes scapularis), the vector for Lyme disease. He has found a strong correlation between rising winter temperatures and the spread of the tick population.1,2 Now Ogden has collaborated with Hugo Beltrami, Canada Research Chair in Climate Dynamics at St. Francis Xavier University, and other researchers to forecast the range expansion of I. scapularis under a greater number of possible climate scenarios.3 Lyme disease was first identified in coastal Connecticut in 1976, and the bacterium that causes it, Borrelia burgdorferi, was isolated in 1982.4 Eastern Canada’s first infected ticks were found on the Ontario shore of Lake Erie in the early 1990s.5 The ticks have since expanded their range farther north into Ontario and parts of Manitoba, Quebec, New Brunswick, and Nova Scotia, Ogden says. The number of reported Lyme disease cases in Canada is rising steadily, from 144 in 2009 to 917 in 2015.6 The inference that temperature thresholds have a strong impact on tick survival fits with a growing body of evidence showing that the ranges of Ixodes ticks in Europe are limited by cold temperatures.7 In a 2014 study, Ogden and his colleagues used a single climate model to forecast the spread of the tick into Canada.1 They concluded that climatic conditions suitable for I. scapularis populations to expand steadily northward would likely occur during the coming century. Ticks do not jump, fly, or drop onto passersby. Instead, they wait on vegetation with their front legs raised in a “questing” pose. When an appropriate host brushes past, the tick hitches a ride and attaches itself for a blood meal. © Juniors Bildarchiv GmbH/Alamy Stock Photo. Photo of an Ixodes scapularis tick on a blade of grass. The basic needs of I. scapularis include woodland habitat and an assortment of vertebrate hosts to bite. After hatching, ticks pass through three life stages and require a blood meal to fuel their development from one to the next. As larvae and nymphs, the ticks most often obtain these meals from white-footed mice or other small rodents, although they occasionally latch onto other creatures—a raccoon, a bird, or an unfortunate human. Adult ticks feed primarily on white-tailed deer.8 Deer are growing in numbers and expanding their range to the north, as are white-footed mice.9 In addition, Ogden says, recent warming has occurred in southern Canadian regions with new influxes of ticks, which are moving in a geographic pattern consistent with temperature being an important factor in their becoming established. Under even the most optimistic scenario, in which the increase in global average temperature is limited to 1.5°C above preindustrial temperatures, the authors’ models showed Lyme disease continuing to spread in Canada. They conclude that people in Nova Scotia and in southern Ontario—home to more than 85% of the provincial population—will need to be aware of and adapt to the risk of bites from infected ticks. Under the worst-case scenario modeled, in which global greenhouse gas emissions are not curtailed, the authors estimate I. scapularis will spread into northern Ontario, a region not yet colonized by deer ticks. “This study is an extension of previous work published in 20141 showing the predicted expansion of the distribution of the Lyme disease tick vector into Canada,” says Maria Diuk-Wasser, a professor at Columbia University who focuses on the emergence of vector-borne diseases. “Although the results are not qualitatively different, it represents an improvement on the previous study by incorporating the full range of and most up-to-date climate models and emission scenarios.” Importantly, she says, the new study accounts for the inherent uncertainty in such models and scenarios but also indicates that an increased risk can be expected in any event. Canada’s public health officials track the leading edge of the tick’s range expansion in several ways: through laboratory identification of ticks found on patients by doctors and veterinarians; by conducting surveys in which a large cloth is dragged across a woodland floor, picking up any ticks that are questing for a host to bite; and by compiling data on reported cases of human infection. The Canadian government has provided information on how to avoid tick bites and identify the symptoms of Lyme disease.10 “We’ll all need to participate in adapting to the tick’s arrival,” says Ogden.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Climate change and Ixodes tick-borne diseases of humans

          The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Estimated Effects of Projected Climate Change on the Basic Reproductive Number of the Lyme Disease Vector Ixodes scapularis

            Background: The extent to which climate change may affect human health by increasing risk from vector-borne diseases has been under considerable debate. Objectives: We quantified potential effects of future climate change on the basic reproduction number (R 0) of the tick vector of Lyme disease, Ixodes scapularis, and explored their importance for Lyme disease risk, and for vector-borne diseases in general. Methods: We applied observed temperature data for North America and projected temperatures using regional climate models to drive an I. scapularis population model to hindcast recent, and project future, effects of climate warming on R 0. Modeled R 0 increases were compared with R 0 ranges for pathogens and parasites associated with variations in key ecological and epidemiological factors (obtained by literature review) to assess their epidemiological importance. Results: R 0 for I. scapularis in North America increased during the years 1971–2010 in spatio-temporal patterns consistent with observations. Increased temperatures due to projected climate change increased R 0 by factors (2–5 times in Canada and 1.5–2 times in the United States), comparable to observed ranges of R 0 for pathogens and parasites due to variations in strains, geographic locations, epidemics, host and vector densities, and control efforts. Conclusions: Climate warming may have co-driven the emergence of Lyme disease in northeastern North America, and in the future may drive substantial disease spread into new geographic regions and increase tick-borne disease risk where climate is currently suitable. Our findings highlight the potential for climate change to have profound effects on vectors and vector-borne diseases, and the need to refocus efforts to understand these effects. Citation: Ogden NH, Radojević M, Wu X, Duvvuri VR, Leighton PA, Wu J. 2014. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ Health Perspect 122:631–638; http://dx.doi.org/10.1289/ehp.1307799
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution

              Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250–500 km by 2050 – a rate of 3.5–11 km per year – and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                Environmental Health Perspectives
                0091-6765
                1552-9924
                24 July 2017
                July 2017
                : 125
                : 7
                : 074002
                Article
                EHP2095
                10.1289/EHP2095
                5801472
                28743676
                9a24163b-e31c-46fc-be22-c28e651f6443

                EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted.

                History
                : 21 April 2017
                : 21 April 2017
                : 21 April 2017
                Categories
                Science Selection

                Public health
                Public health

                Comments

                Comment on this article