8
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PeVL1 Novel Elicitor Protein, from Verticillium lecanii 2, Enhances Systemic Resistance against Rice Leaf Roller (Marasmia ruralis Wlk.) in Rice (Oryza sativa L.)

      , ,
      Microorganisms
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hazardous pest known as rice leaf roller (Marasmia ruralis Wlk.) (Lepidoptera: Pyralidae), which undermines rice (Oryza sativa L.) output globally, folds the leaves of the rice plant. Protein elicitors are thought to be biological elements that causes the rice to become resistant to herbivores. The potential for biocontrol of the emerging elicitor protein evaluated from Verticillium lecanii 2 (PeVL1) was evaluated against M. ruralis. To assess the impact of PeVL1 on immature development, survival, and lifetime, four different PeVL1 concentrations were allocated. Electrical penetration graphs (EPGs) against M. ruralis were used to evaluate adult reproductive efficiency and the interaction between the pest and the pathogen. Furthermore, the characterization of active substances in PeVL1 with multi-acting entomopathogenic effects looked into the direct interactions of PeVL1 with temperature and climatic change in rice (O. sativa) plants. PeVL1 treatments reduced the population increase of second and third generation M. ruralis compared to controls. In a test of host selection, M. ruralis colonized control plants more quickly than PeVL1-treated O. sativa plants. PeVL1 concentrations prolonged the M. ruralis larval stage. Similar to fecundity, PeVL1-treated seedlings produced fewer offspring than control seedlings. On PeVL1-treated leaves, trichomes and wax production created an unfavorable habitat for M. ruralis. PeVL1 changed the surface structure of the leaves, which inhibited colonization and decreased M. ruralis reproduction. The activation of pathways was another aspect of systemic defense activities including jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). Based on these results against M. ruralis, the use of PeVL1 in the agroecosystem with integrated pest management and biocontrol seems appropriate. Our research provides a novel insight into a cutting-edge biocontrol method utilizing V. lecanii 2.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          PUVA-induced repigmentation of vitiligo: scanning electron microscopy of hair follicles.

          PUVA-i-duced repigmentation of vitiligo was studied using both the split-dopa reaction and scanning electron microscopy. Proliferation of hypertrophic, Dopa-positive melanocytes were observed in the lower portion of some hair follicles, whereas other giant melanocytes were observed along the middle portion. The existence of a melanocyte reservoir in human hair follicles is postulated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Specialist versus generalist insect herbivores and plant defense.

            There has been a long-standing hypothesis that specialist and generalist insects interact with plants in distinct ways. Although many tests exist, they typically compare only one species of each, they sometimes confound specialization and feeding guild, and often do not link chemical or transcriptional measures of the plant to actual resistance. In this review, we synthesize current data on whether specialists and generalists actually differ, with special attention to comparisons of their differential elicitation of plant responses. Although we find few consistencies in plant induction by specialists versus generalists, feeding guilds are predictive of differential plant responses. We outline a novel set of predictions based on current coevolutionary hypotheses and make methodological suggestions for improved comparisons of specialists and generalists. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phenolic Compounds and Their Role in Disease Resistance

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                MICRKN
                Microorganisms
                Microorganisms
                MDPI AG
                2076-2607
                February 2023
                January 26 2023
                : 11
                : 2
                : 317
                Article
                10.3390/microorganisms11020317
                9966112
                36838282
                9a2da893-4e25-4a86-93b4-3b17acd85fa7
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article