23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A transcribed ultraconserved noncoding RNA, Uc.173, is a key molecule for the inhibition of lead-induced neuronal apoptosis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a common toxic metal, lead has significant neurotoxicity to brain development. Long non-coding RNAs (lncRNAs) function in multiple biological processes. However, whether lncRNAs are involved in lead-induced neurotoxicity remains unclear. Uc.173 is a lncRNA from a transcribed ultra-conservative region (T-UCR) of human, mouse and rat genomes. We established a lead-induced nerve injury mouse model. It showed the levels of Uc.173 decreased significantly in hippocampus tissue and serum of the model. We further tested the expression of Uc.173 in serum of lead-exposed children, which also showed a tendency to decrease. To explore the effects of Uc.173 on lead-induced nerve injury, we overexpressed Uc.173 in an N2a mouse nerve cell line and found Uc.173 had an inhibitory effect on lead-induced apoptosis of N2a. To investigate the molecular mechanisms of Uc.173 in apoptosis associated with lead-induced nerve injury, we predicted the target microRNAs of Uc.173 by using miRanda, TargetScan and RegRNA. After performing quantitative real-time PCR and bioinformatics analysis, we showed Uc.173 might inter-regulate with miR-291a-3p in lead-induced apoptosis and regulate apoptosis-associated genes. Our study suggests Uc.173 significantly inhibits the apoptosis of nerve cells, which may be mediated by inter-regulation with miRNAs in lead-induced nerve injury.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          RegRNA: an integrated web server for identifying regulatory RNA motifs and elements

          Numerous regulatory structural motifs have been identified as playing essential roles in transcriptional and post-transcriptional regulation of gene expression. RegRNA is an integrated web server for identifying the homologs of regulatory RNA motifs and elements against an input mRNA sequence. Both sequence homologs and structural homologs of regulatory RNA motifs can be recognized. The regulatory RNA motifs supported in RegRNA are categorized into several classes: (i) motifs in mRNA 5′-untranslated region (5′-UTR) and 3′-UTR; (ii) motifs involved in mRNA splicing; (iii) motifs involved in transcriptional regulation; (iv) riboswitches; (v) splicing donor/acceptor sites; (vi) inverted repeats; and (vii) miRNA target sites. The experimentally validated regulatory RNA motifs are extracted from literature survey and several regulatory RNA motif databases, such as UTRdb, TRANSFAC, alternative splicing database (ASD) and miRBase. A variety of computational programs are integrated for identifying the homologs of the regulatory RNA motifs. An intuitive user interface is designed to facilitate the comprehensive annotation of user-submitted mRNA sequences. The RegRNA web server is now available at .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours.

            Different classes of non-coding RNAs, including microRNAs, have recently been implicated in the process of tumourigenesis. In this study, we examined the expression and putative functions of a novel class of non-coding RNAs known as transcribed ultraconserved regions (T-UCRs) in neuroblastoma. Genome-wide expression profiling revealed correlations between specific T-UCR expression levels and important clinicogenetic parameters such as MYCN amplification status. A functional genomics approach based on the integration of multi-level transcriptome data was adapted to gain insights into T-UCR functions. Assignments of T-UCRs to cellular processes such as TP53 response, differentiation and proliferation were verified using various cellular model systems. For the first time, our results define a T-UCR expression landscape in neuroblastoma and suggest widespread T-UCR involvement in diverse cellular processes that are deregulated in the process of tumourigenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma

              Background Neuroblastoma is the most common, pediatric, extra-cranial, malignant solid tumor. Despite multimodal therapeutic protocols, outcome for children with a high-risk clinical phenotype remains poor, with long-term survival still less than 40%. Hereby, we evaluated the potential of non-coding RNA expression to predict outcome in high-risk, stage 4 neuroblastoma. Methods We analyzed expression of 481 Ultra Conserved Regions (UCRs) by reverse transcription-quantitative real-time PCR and of 723 microRNAs by microarrays in 34 high-risk, stage 4 neuroblastoma patients. Results First, the comparison of 8 short- versus 12 long-term survivors showed that 54 UCRs were significantly (P < 0.0491) over-expressed in the former group. For 48 Ultra Conserved Region (UCRs) the expression levels above the cut-off values defined by ROC curves were strongly associated with good-outcome (OS: 0.0001
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                5 January 2016
                13 December 2015
                : 7
                : 1
                : 112-124
                Affiliations
                1 State Key Laboratory of Respiratory Disease, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, PR China
                2 Institute for Chemical Carcinogenesis, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
                3 School of Public Health, Guangdong Pharmaceutical University, Guangzhou, PR China
                4 Laboratory Animal Center, Guangzhou Medical University, Guangzhou, PR China
                Author notes
                Correspondence to: Yiguo Jiang, jiangyiguo@ 123456vip.163.com
                Article
                4807986
                26683706
                Copyright: © 2016 Nan et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Categories
                Research Paper: Pathology

                Oncology & Radiotherapy

                uc.173, t-ucr, lead, neuronal apoptosis, pathology section

                Comments

                Comment on this article