31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Telomeres and Telomerase: Role in Marek’s Disease Virus Pathogenesis, Integration and Tumorigenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telomeres protect the ends of vertebrate chromosomes from deterioration and consist of tandem nucleotide repeats (TTAGGG) n that are associated with a number of proteins. Shortening of the telomeres occurs during genome replication, thereby limiting the replication potential of somatic cells. To counteract this shortening, vertebrates encode the telomerase complex that maintains telomere length in certain cell types via de novo addition of telomeric repeats. Several herpesviruses, including the highly oncogenic alphaherpesvirus Marek’s disease virus (MDV), harbor telomeric repeats (TMR) identical to the host telomere sequences at the ends of their linear genomes. These TMR facilitate the integration of the MDV genome into host telomeres during latency, allowing the virus to persist in the host for life. Integration into host telomeres is critical for disease and tumor induction by MDV, but also enables efficient reactivation of the integrated virus genome. In addition to the TMR, MDV also encodes a telomerase RNA subunit (vTR) that shares 88% sequence identity with the telomerase RNA in chicken (chTR). vTR is highly expressed during all stages of the virus lifecycle, enhances telomerase activity and plays an important role in MDV-induced tumor formation. This review will focus on the recent advances in understanding the role of viral TMR and vTR in MDV pathogenesis, integration and tumorigenesis.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression.

          DMC1 is a new meiosis-specific yeast gene. Dmc1 protein is structurally similar to bacterial RecA proteins. dmc1 mutants are defective in reciprocal recombination, accumulate double-strand break (DSB) recombination intermediates, fail to form normal synaptonemal complex (SC), and arrest late in meiotic prophase. dmc1 phenotypes are consistent with a functional relationship between Dmc1 and RecA, and thus eukaryotic and prokaryotic mechanisms for homology recognition and strand exchange may be related. dmc1 phenotypes provide further evidence that recombination and SC formation are interrelated processes and are consistent with a requirement for DNA-DNA interactions during SC formation. dmc1 mutations confer prophase arrest. Additional evidence suggests that arrest occurs at a meiosis-specific cell cycle "checkpoint" in response to a primary defect in prophase chromosome metabolism. DMC1 is homologous to yeast's RAD51 gene, supporting the view that mitotic DSB repair has been recruited for use in meiotic chromosome metabolism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic steps of mammalian homologous repair with distinct mutagenic consequences.

            Repair of chromosomal breaks is essential for cellular viability, but misrepair generates mutations and gross chromosomal rearrangements. We investigated the interrelationship between two homologous-repair pathways, i.e., mutagenic single-strand annealing (SSA) and precise homology-directed repair (HDR). For this, we analyzed the efficiency of repair in mammalian cells in which double-strand break (DSB) repair components were disrupted. We observed an inverse relationship between HDR and SSA when RAD51 or BRCA2 was impaired, i.e., HDR was reduced but SSA was increased. In particular, expression of an ATP-binding mutant of RAD51 led to a >90-fold shift to mutagenic SSA repair. Additionally, we found that expression of an ATP hydrolysis mutant of RAD51 resulted in more extensive gene conversion, which increases genetic loss during HDR. Disruption of two other DSB repair components affected both SSA and HDR, but in opposite directions: SSA and HDR were reduced by mutation of Brca1, which, like Brca2, predisposes to breast cancer, whereas SSA and HDR were increased by Ku70 mutation, which affects nonhomologous end joining. Disruption of the BRCA1-associated protein BARD1 had effects similar to those of mutation of BRCA1. Thus, BRCA1/BARD1 has a role in homologous repair before the branch point of HDR and SSA. Interestingly, we found that Ku70 mutation partially suppresses the homologous-repair defects of BARD1 disruption. We also examined the role of RAD52 in homologous repair. In contrast to yeast, Rad52(-)(/)(-) mouse cells had no detectable HDR defect, although SSA was decreased. These results imply that the proper genetic interplay of repair factors is essential to limit the mutagenic potential of DSB repair.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro.

              The human testis Rad51 protein, a structural homolog of E. coli RecA, binds single- and double-stranded DNA and exhibits DNA-dependent ATPase activity. Using circular ssDNA and linear dsDNA (3.0 kb in length), we demonstrate that hRad51 promotes homologous pairing and strand exchange reactions in vitro. Joint molecule formation was dependent upon ATP hydrolysis and DNA homology and was stimulated by the single-strand DNA-binding protein RP-A. In these reactions, the 5' terminus of the complementary strand of the linear duplex was efficiently transferred to the ssDNA. However, under standard conditions, extensive strand exchange was not observed. These results establish hRad51 as a functional homolog of RecA, but indicate that the human protein and its bacterial counterpart differ in their ability to promote extensive strand transfer. It is proposed that hRad51 mediates homology recognition and initiates strand exchange, but that extensive heteroduplex formation in higher organisms requires the actions of additional proteins.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                04 July 2017
                July 2017
                : 9
                : 7
                : 173
                Affiliations
                [1 ]Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7–13, 14163 Berlin, Germany; ahmed1985@ 123456zedat.fu-berlin.de (A.K.); previnato@ 123456zedat.fu-berlin.de (R.L.P.); d.wight@ 123456fu-berlin.de (D.J.W.)
                [2 ]Department of Poultry Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag 82424, Egypt
                Author notes
                [* ]Correspondence: b.kaufer@ 123456fu-berlin.de ; Tel.: +49-30-838-51936; Fax: +49-30-838-451936
                Author information
                https://orcid.org/0000-0001-9584-7279
                https://orcid.org/0000-0001-6320-5597
                https://orcid.org/0000-0003-1328-2695
                Article
                viruses-09-00173
                10.3390/v9070173
                5537665
                28677643
                9a395850-1a5e-4ff2-802f-d7827e274788
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 May 2017
                : 26 June 2017
                Categories
                Review

                Microbiology & Virology
                herpesvirus,marek’s disease virus (mdv),telomeres,telomerase,integration,tumorigenesis

                Comments

                Comment on this article