+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number, and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light–dark cycles, and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.

          Related collections

          Most cited references 123

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial formation of reactive oxygen species.

           Julio Turrens (2003)
          The reduction of oxygen to water proceeds via one electron at a time. In the mitochondrial respiratory chain, Complex IV (cytochrome oxidase) retains all partially reduced intermediates until full reduction is achieved. Other redox centres in the electron transport chain, however, may leak electrons to oxygen, partially reducing this molecule to superoxide anion (O2-*). Even though O2-* is not a strong oxidant, it is a precursor of most other reactive oxygen species, and it also becomes involved in the propagation of oxidative chain reactions. Despite the presence of various antioxidant defences, the mitochondrion appears to be the main intracellular source of these oxidants. This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments. We also discuss various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants.
            • Record: found
            • Abstract: found
            • Article: not found

            Computational identification of plant microRNAs and their targets, including a stress-induced miRNA.

            MicroRNAs (miRNAs) are approximately 21-nucleotide RNAs, some of which have been shown to play important gene-regulatory roles during plant development. We developed comparative genomic approaches to systematically identify both miRNAs and their targets that are conserved in Arabidopsis thaliana and rice (Oryza sativa). Twenty-three miRNA candidates, representing seven newly identified gene families, were experimentally validated in Arabidopsis, bringing the total number of reported miRNA genes to 92, representing 22 families. Nineteen newly identified target candidates were confirmed by detecting mRNA fragments diagnostic of miRNA-directed cleavage in plants. Overall, plant miRNAs have a strong propensity to target genes controlling development, particularly those of transcription factors and F-box proteins. However, plant miRNAs have conserved regulatory functions extending beyond development, in that they also target superoxide dismutases, laccases, and ATP sulfurylases. The expression of miR395, the sulfurylase-targeting miRNA, increases upon sulfate starvation, showing that miRNAs can be induced by environmental stress.
              • Record: found
              • Abstract: found
              • Article: not found

              ER tubules mark sites of mitochondrial division.

              Mitochondrial structure and distribution are regulated by division and fusion events. Mitochondrial division is regulated by Dnm1/Drp1, a dynamin-related protein that forms helices around mitochondria to mediate fission. Little is known about what determines sites of mitochondrial fission within the mitochondrial network. The endoplasmic reticulum (ER) and mitochondria exhibit tightly coupled dynamics and have extensive contacts. We tested whether ER plays a role in mitochondrial division. We found that mitochondrial division occurred at positions where ER tubules contacted mitochondria and mediated constriction before Drp1 recruitment. Thus, ER tubules may play an active role in defining the position of mitochondrial division sites.

                Author and article information

                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                08 January 2014
                : 4
                1Instituto de Agrobiotecnología del Litoral–Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Litoral Santa Fe, Argentina
                2Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral Santa Fe, Argentina
                Author notes

                Edited by: Philippe Giegé, Centre National de la Recherche Scientifique, France

                Reviewed by: Ján A. Miernyk, University of Missouri, USA; Hannetz Roschzttardtz, University of Wisconsin-Madison, USA

                *Correspondence: Elina Welchen and Daniel H. Gonzalez, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina e-mail: ewelchen@ ; dhgonza@
                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science.
                Copyright © 2014 Welchen, García, Mansilla and Gonzalez.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 122, Pages: 12, Words: 0
                Plant Science
                Review Article


                Comment on this article