2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolic Profiling of the Diabetic Heart: Toward a Richer Picture

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The increasing global prevalence of diabetes has been accompanied by a rise in diabetes-related conditions. This includes diabetic cardiomyopathy (DbCM), a progressive form of heart disease that occurs with both insulin-dependent (type-1) and insulin-independent (type-2) diabetes and arises in the absence of hypertension or coronary artery disease. Over time, DbCM can develop into overt heart failure. Like other forms of cardiomyopathy, DbCM is accompanied by alterations in metabolism which could lead to further progression of the pathology, with metabolic derangement postulated to precede functional changes in the diabetic heart. Moreover in the case of type-2 diabetes, underlying insulin resistance is likely to prevent the canonical substrate switch of the failing heart away from fatty acid oxidation toward increased use of glycolysis. Analytical chemistry techniques, collectively known as metabolomics, are useful tools for investigating the condition. In this article, we provide a comprehensive review of those studies that have employed metabolomic techniques, namely chromatography, mass spectrometry and nuclear magnetic resonance spectroscopy, to profile metabolic remodeling in the diabetic heart of human patients and animal models. These studies collectively demonstrate that glycolysis and glucose oxidation are suppressed in the diabetic myocardium and highlight a complex picture regarding lipid metabolism. The diabetic heart typically shows an increased reliance on fatty acid oxidation, yet triacylglycerols and other lipids accumulate in the diabetic myocardium indicating probable lipotoxicity. The application of lipidomic techniques to the diabetic heart has identified specific lipid species that become enriched and which may in turn act as plasma-borne biomarkers for the condition. Metabolomics is proving to be a powerful approach, allowing a much richer analysis of the metabolic alterations that occur in the diabetic heart. Careful physiological interpretation of metabolomic results will now be key in order to establish which aspects of the metabolic derangement are causal to the progression of DbCM and might form the basis for novel therapeutic intervention.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening.

          The objective of the present study was to develop a rat model that replicates the natural history and metabolic characteristics of human type 2 diabetes and is also suitable for pharmacological screening. Male Sprague-Dawley rats (160-180 g) were divided into two groups and fed with commercially available normal pellet diet (NPD) (12% calories as fat) or in-house prepared high-fat diet (HFD) (58% calories as fat), respectively, for a period of 2 weeks. The HFD-fed rats exhibited significant increase in body weight, basal plasma glucose (PGL), insulin (PI), triglycerides (PTG) and total cholesterol (PTC) levels as compared to NPD-fed control rats. Besides, the HFD rats showed significant reduction in glucose disappearance rate (K-value) on intravenous insulin glucose tolerance test (IVIGTT). Hyperinsulinemia together with reduced glucose disappearance rate (K-value) suggested that the feeding of HFD-induced insulin resistance in rats. After 2 weeks of dietary manipulation, a subset of the rats from both groups was injected intraperitoneally with low dose of streptozotocin (STZ) (35 mg kg(-1)). Insulin-resistant HFD-fed rats developed frank hyperglycemia upon STZ injection that, however, caused only mild elevation in PGL in NPD-fed rats. Though there was significant reduction in PI level after STZ injection in HFD rats, the reduction observed was only to a level that was comparable with NPD-fed control rats. In addition, the levels of PTG and PTC were further accentuated after STZ treatment in HFD-fed rats. In contrast, STZ (35 mg kg(-1), i.p.) failed to significantly alter PI, PTG and PTC levels in NPD-fed rats. Thus, these fat-fed/STZ-treated rats simulate natural disease progression and metabolic characteristics typical of individuals at increased risk of developing type 2 diabetes because of insulin resistance and obesity. Further, the fat-fed/STZ-treated rats were found to be sensitive for glucose lowering effects of insulin sensitizing (pioglitazone) as well as insulinotropic (glipizide) agents. Besides, the effect of pioglitazone and glipizide on the plasma lipid parameters (PTG and PTC) was shown in these diabetic rats. The present study represents that the combination of HFD-fed and low-dose STZ-treated rat serves as an alternative animal model for type 2 diabetes simulating the human syndrome that is also suitable for testing anti-diabetic agents for the treatment of type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diet-induced type II diabetes in C57BL/6J mice.

            We investigated the effects of diet-induced obesity on glucose metabolism in two strains of mice, C57BL/6J and A/J. Twenty animals from each strain received ad libitum exposure to a high-fat high-simple-carbohydrate diet or standard Purina Rodent Chow for 6 mo. Exposure to the high-fat, high-simple-carbohydrate, low-fiber diet produced obesity in both A/J and C57BL/6J mice. Whereas obesity was associated with only moderate glucose intolerance and insulin resistance in A/J mice, obese C57BL/6J mice showed clear-cut diabetes with fasting blood glucose levels of greater than 240 mg/dl and blood insulin levels of greater than 150 microU/ml. C57BL/6J mice showed larger glycemic responses to stress and epinephrine in the lean state than AJ mice, and these responses were exaggerated by obesity. These data suggest that the C57BL/6J mouse carries a genetic predisposition to develop non-insulin-dependent (type II) diabetes. Furthermore, altered glycemic response to adrenergic stimulation may be a biologic marker for this genetic predisposition to develop type II diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy.

              The study of biological systems in a holistic manner (systems biology) is increasingly being viewed as a necessity to provide qualitative and quantitative descriptions of the emergent properties of the complete system. Systems biology performs studies focussed on the complex interactions of system components; emphasising the whole system rather than the individual parts. Many perturbations to mammalian systems (diet, disease, drugs) are multi-factorial and the study of small parts of the system is insufficient to understand the complete phenotypic changes induced. Metabolomics is one functional level tool being employed to investigate the complex interactions of metabolites with other metabolites (metabolism) but also the regulatory role metabolites provide through interaction with genes, transcripts and proteins (e.g. allosteric regulation). Technological developments are the driving force behind advances in scientific knowledge. Recent advances in the two analytical platforms of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have driven forward the discipline of metabolomics. In this critical review, an introduction to metabolites, metabolomes, metabolomics and the role of MS and NMR spectroscopy will be provided. The applications of metabolomics in mammalian systems biology for the study of the health-disease continuum, drug efficacy and toxicity and dietary effects on mammalian health will be reviewed. The current limitations and future goals of metabolomics in systems biology will also be discussed (374 references).
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                31 May 2019
                2019
                : 10
                : 639
                Affiliations
                [1] 1Department of Physiology, Development and Neuroscience, University of Cambridge , Cambridge, United Kingdom
                [2] 2Department of Biochemistry and Systems Biology Centre, University of Cambridge , Cambridge, United Kingdom
                Author notes

                Edited by: Kate L. Weeks, Baker Heart and Diabetes Institute, Australia

                Reviewed by: Gary David Lopaschuk, University of Alberta, Canada; Dunja Aksentijevic, Queen Mary University of London, United Kingdom

                *Correspondence: Andrew J. Murray, ajm267@ 123456cam.ac.uk

                This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2019.00639
                6555155
                31214041
                9a48864d-93c8-466e-b25c-393bbc803950
                Copyright © 2019 Sowton, Griffin and Murray.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 February 2019
                : 06 May 2019
                Page count
                Figures: 1, Tables: 4, Equations: 0, References: 151, Pages: 16, Words: 0
                Funding
                Funded by: British Heart Foundation 10.13039/501100000274
                Funded by: Research Councils UK 10.13039/501100000690
                Categories
                Physiology
                Review

                Anatomy & Physiology
                diabetic cardiomyopathy,heart failure,metabolomics,lipidomics,mitochondria,animal models

                Comments

                Comment on this article