3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contact metamorphic reactions and fluid–rock interactions related to magmatic sill intrusion in the Guaymas Basin

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Igneous basaltic intrusions into young organic-rich sedimentary basins have a major impact not only on the carbon cycle but also on major and trace element transfers between deep and superficial geological reservoirs. The actively rifting Guaymas Basin in the Gulf of California, which was drilled by the International Ocean Discovery Program during Expedition 385, represents the nascent stage of an ocean characterized by siliceous organic-rich sediments (diatom ooze) intruded by a very dense network of basaltic sills. This study focuses on Site U1546 where the relatively high geothermal gradient (over 200 ∘C km−1) induces early diagenetic transformations in both pore waters and sediments, involving sulfide, carbonate and silica. Geochemical and mineralogical characterizations of the sediment at sill contacts indicate that sulfides and silica polymorphs are the main phases impacted by contact metamorphism, being evident by a transition from opal-CT to quartz and pyrite to pyrrhotite, respectively. Mass balance calculations have been used to estimate mass transfers in metamorphic aureoles. In the top contact aureole, predominantly isochemical metamorphism is reflected by the presence of authigenic quartz and disseminated 20–50 µm sized pyrrhotite crystals, filling primary interstitial space, and partial dissolution of detrital feldspar grains. In the bottom contact aureole, quartz and euhedral pyrrhotite crystals occur, which are up to 4 times larger than those at the top contact. Significant metamorphism of sediments is observed in the lower contact aureole, where plagioclase recrystallizes around the detrital feldspars and locally euhedral pyroxenes are included in patches of carbonate cement; this suggests precipitation from carbon-rich fluids at temperatures (T) higher than 300 ∘C. The lower contact aureole also is more enriched in CaO, Na2O, Fe2O3 and trace elements (Cu, As, Zn, etc.) compared to the upper contact. Based on these petrological investigations, a conceptual model of magma–sediment–fluid interaction is proposed distinguishing top and bottom contact processes. Initial contact metamorphism due to sill emplacement is characterized by dehydration reactions in sediments and crystallization of new minerals. It was followed by carbonate precipitation from the released fluids. At a final stage, the temperature re-equilibrated with the geothermal gradient and the rocks were further altered by hydrothermal fluids.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Release of methane from a volcanic basin as a mechanism for initial Eocene global warming

          A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (approximately 10,000 yr) input of isotopically depleted carbon. It has been suggested previously that extensive melting of gas hydrates buried in marine sediments may represent the carbon source and has caused the global climate change. Large-scale hydrate melting, however, requires a hitherto unknown triggering mechanism. Here we present evidence for the presence of thousands of hydrothermal vent complexes identified on seismic reflection profiles from the Vøring and Møre basins in the Norwegian Sea. We propose that intrusion of voluminous mantle-derived melts in carbon-rich sedimentary strata in the northeast Atlantic may have caused an explosive release of methane--transported to the ocean or atmosphere through the vent complexes--close to the Palaeocene/Eocene boundary. Similar volcanic and metamorphic processes may explain climate events associated with other large igneous provinces such as the Siberian Traps (approximately 250 million years ago) and the Karoo Igneous Province (approximately 183 million years ago).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Siberian gas venting and the end-Permian environmental crisis

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                European Journal of Mineralogy
                Eur. J. Mineral.
                Copernicus GmbH
                1617-4011
                2023
                November 16 2023
                : 35
                : 6
                : 987-1007
                Article
                10.5194/ejm-35-987-2023
                9a4e5bc3-84ca-4de5-9626-9b1402b09a7c
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article