32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Differential functional variability of serotonin transporter and monoamine oxidase a genes in macaque species displaying contrasting levels of aggression-related behavior.

      Behavior Genetics
      Aggression, physiology, Alleles, Animals, Biological Evolution, Female, Genetic Variation, genetics, Genetics, Behavioral, Genotype, Macaca, Male, Monoamine Oxidase, Polymorphism, Genetic, Serotonin Plasma Membrane Transport Proteins, Species Specificity, Synaptic Transmission

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Functional allelic variation in the transcriptional control region of the serotonin transporter and monoamine oxidase A genes has been associated with anxiety- and aggression-related behavior in humans and, more recently, in nonhuman primates. Here, we have genotyped these polymorphic regions in seven species of the genus Macaca. Macaques exhibit exceptional inter-species variation in aggression-related social behavior as illustrated by recent studies showing overlapping patterns of aggression-based social organization grades and macaque phylogeny. We cloned and sequenced two new alleles of the serotonin transporter gene-linked polymorphic region in Barbary and Tibetan macaques. In addition, we observed that species displaying tolerant societies, with relaxed dominance and high levels of conciliatory tendency, were monomorphic for both the serotonin transporter gene and, with the exception of Tonkean macaques, the monoamine oxidase A gene. In contrast, those species known to exhibit intolerant, hierarchical and nepotistic societies were polymorphic at one or more of these loci. Rhesus (M. mulatta), the most intolerant and hierarchical species of macaques, showed the greatest degree of allelic variation in both genes. Additional investigation of a polymorphic repeat in exon III of the dopamine receptor D4 as well as a repeat/single nucleotide polymorphism in the 3' untranslated region of the dopamine transporter which have both been implicated in the modulation of complex behavior failed to reveal a relationship between allelic variability and social organization grade. Taken together, these findings suggest that genetic variation of serotonergic neurotransmission may play an important role in determining inter-species differences in aggression related behavior in macaques.

          Related collections

          Author and article information

          Comments

          Comment on this article