25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ovarian carcinoma is a rarely curable disease, for which new treatment options are required. As agents that block HMG-CoA reductase and the mevalonate pathway, the statin family of drugs are used in the treatment of hypercholesterolemia and have been shown to trigger apoptosis in a tumor-specific manner. Recent clinical trials show that the addition of statins to traditional chemotherapeutic strategies can increase efficacy of targeting statin-sensitive tumors. Our goal was to assess statin-induced apoptosis of ovarian cancer cells, either alone or in combination with chemotherapeutics, and then determine these mechanisms of action.

          Methods

          The effect of lovastatin on ovarian cancer cell lines was evaluated alone and in combination with cisplatin and doxorubicin using several assays (MTT, TUNEL, fixed PI, PARP cleavage) and synergy determined by evaluating the combination index. The mechanisms of action were evaluated using functional, molecular, and pharmacologic approaches.

          Results

          We demonstrate that lovastatin induces apoptosis of ovarian cancer cells in a p53-independent manner and synergizes with doxorubicin, a chemotherapeutic agent used to treat recurrent cases of ovarian cancer. Lovastatin drives ovarian tumor cell death by two mechanisms: first, by blocking HMG-CoA reductase activity, and second, by sensitizing multi-drug resistant cells to doxorubicin by a novel mevalonate-independent mechanism. This inhibition of drug transport, likely through inhibition of P-glycoprotein, potentiates both DNA damage and tumor cell apoptosis.

          Conclusions

          The results of this research provide pre-clinical data to warrant further evaluation of statins as potential anti-cancer agents to treat ovarian carcinoma. Many statins are inexpensive, off-patent generic drugs that are immediately available for use as anti-cancer agents. We provide evidence that lovastatin triggers apoptosis of ovarian cancer cells as a single agent by a mevalonate-dependent mechanism. Moreover, we also show lovastatin synergizes with doxorubicin, an agent administered for recurrent disease. This synergy occurs by a novel mevalonate-independent mechanism that antagonizes drug resistance, likely by inhibiting P-glycoprotein. These data raise important issues that may impact how statins can best be included in chemotherapy regimens.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Statistics, 2008

          Each year, the American Cancer Society estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute, Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries and mortality data from the National Center for Health Statistics. Incidence and death rates are age-standardized to the 2000 US standard million population. A total of 1,437,180 new cancer cases and 565,650 deaths from cancer are projected to occur in the United States in 2008. Notable trends in cancer incidence and mortality include stabilization of incidence rates for all cancer sites combined in men from 1995 through 2004 and in women from 1999 through 2004 and a continued decrease in the cancer death rate since 1990 in men and since 1991 in women. Overall cancer death rates in 2004 compared with 1990 in men and 1991 in women decreased by 18.4% and 10.5%, respectively, resulting in the avoidance of over a half million deaths from cancer during this time interval. This report also examines cancer incidence, mortality, and survival by site, sex, race/ethnicity, education, geographic area, and calendar year, as well as the proportionate contribution of selected sites to the overall trends. Although much progress has been made in reducing mortality rates, stabilizing incidence rates, and improving survival, cancer still accounts for more deaths than heart disease in persons under age 85 years. Further progress can be accelerated by supporting new discoveries and by applying existing cancer control knowledge across all segments of the population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance.

            Lipid-lowering drugs, especially 3-hydroxy-3-methylglutaryl-coenzyme A inhibitors (statins), are widely used in the treatment and prevention of atherosclerotic disease. The benefits of statins are well documented. However, lipid-lowering drugs may cause myopathy, even rhabdomyolysis, the risk of which is increased by certain interactions. Simvastatin, lovastatin, and atorvastatin are metabolized by cytochrome P450 (CYP) 3A4 (simvastatin acid is also metabolized by CYP2C8); their plasma concentrations and risk of myotoxicity are greatly increased by strong inhibitors of CYP3A4 (eg, itraconazole and ritonavir). Weak or moderately potent CYP3A4 inhibitors (eg, verapamil and diltiazem) can be used cautiously with small doses of CYP3A4-dependent statins. Cerivastatin is metabolized by CYP2C8 and CYP3A4, and fluvastatin is metabolized by CYP2C9. The exposure to fluvastatin is increased by less than 2-fold by inhibitors of CYP2C9. Pravastatin, rosuvastatin, and pitavastatin are excreted mainly unchanged, and their plasma concentrations are not significantly increased by pure CYP3A4 inhibitors. Cyclosporine (INN, ciclosporin) inhibits CYP3A4, P-glycoprotein (multidrug resistance protein 1), organic anion transporting polypeptide 1B1 (OATP1B1), and some other hepatic uptake transporters. Gemfibrozil and its glucuronide inhibit CYP2C8 and OATP1B1. These effects of cyclosporine and gemfibrozil explain the increased plasma statin concentrations and, together with pharmacodynamic factors, the increased risk of myotoxicity when coadministered with statins. Inhibitors of OATP1B1 may decrease the benefit/risk ratio of statins by interfering with their entry into hepatocytes, the site of action. Lipid-lowering drugs can be involved also in other interactions, including those between enzyme inducers and CYP3A4 substrate statins, as well as those between gemfibrozil and CYP2C8 substrate antidiabetics. Knowledge of the pharmacokinetic and pharmacodynamic properties of lipid-lowering drugs and their interaction mechanisms helps to avoid adverse interactions, without compromising therapeutic benefits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition.

              S-F Zhou (2008)
              1. P-glycoprotein (P-gp/MDR1), one of the most clinically important transmembrane transporters in humans, is encoded by the ABCB1/MDR1 gene. Recent insights into the structural features of P-gp/MDR1 enable a re-evaluation of the biochemical evidence on the binding and transport of drugs by P-gp/MDR1. 2. P-gp/MDR1 is found in various human tissues in addition to being expressed in tumours cells. It is located on the apical surface of intestinal epithelial cells, bile canaliculi, renal tubular cells, and placenta and the luminal surface of capillary endothelial cells in the brain and testes. 3. P-gp/MDR1 confers a multi-drug resistance (MDR) phenotype to cancer cells that have developed resistance to chemotherapy drugs. P-gp/MDR1 activity is also of great clinical importance in non-cancer-related drug therapy due to its wide-ranging effects on the absorption and excretion of a variety of drugs. 4. P-gp/MDR1 excretes xenobiotics such as cytotoxic compounds into the gastrointestinal tract, bile and urine. It also participates in the function of the blood-brain barrier. 5. One of the most interesting characteristics of P-gp/MDR1 is that its many substrates vary greatly in their structure and functionality, ranging from small molecules such as organic cations, carbohydrates, amino acids and some antibiotics to macromolecules such as polysaccharides and proteins. 6. Quite a number of single nucleotide polymorphisms have been found for the MDR1 gene. These single nucleotide polymorphisms are associated with altered oral bioavailability of P-gp/MDR1 substrates, drug resistance, and a susceptibility to some human diseases. 7. Altered P-gp/MDR1 activity due to induction and/or inhibition can cause drug-drug interactions with altered drug pharmacokinetics and response. 8. Further studies are warranted to explore the physiological function and pharmacological role of P-gp/MDR1.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2010
                18 March 2010
                : 10
                : 103
                Affiliations
                [1 ]Ontario Cancer Institute/Princess Margaret Hospital, Campbell Family Institute for Cancer Research, Toronto, ON, Canada
                [2 ]Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
                Article
                1471-2407-10-103
                10.1186/1471-2407-10-103
                2847546
                20298590
                9a6c14f9-e014-4806-ad07-6a51b5ca9b72
                Copyright ©2010 Martirosyan et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 April 2009
                : 18 March 2010
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article