5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Long Non-coding RNAs and MicroRNAs in Heart Disease: Insight Into Mechanisms and Therapeutic Approaches

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiovascular disease is the leading cause of mortality worldwide and there is an increasing need to identify new therapeutic targets that could be used to prevent or treat these diseases. Due to recent scientific advances, non-coding RNAs are widely accepted as important regulators of cellular processes, and the identification of an axis of interaction between long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs) has provided another platform through which cardiovascular disease could be targeted therapeutically. Increasing evidence has detailed the importance of these non-coding RNAs, both individually and in an axis of regulation, in the processes and diseases involving the heart. However, further investigation into the consequences of targeting this mechanism, as well as refinement of how the system is targeted, are required before a treatment can be provided in clinic. This level of genomic regulation provides an exciting potential novel therapeutic strategy for the treatment of cardiovascular disease.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis.

          Acute myocardial infarction (MI) due to coronary artery occlusion is accompanied by a pathological remodeling response that includes hypertrophic cardiac growth and fibrosis, which impair cardiac contractility. Previously, we showed that cardiac hypertrophy and heart failure are accompanied by characteristic changes in the expression of a collection of specific microRNAs (miRNAs), which act as negative regulators of gene expression. Here, we show that MI in mice and humans also results in the dysregulation of specific miRNAs, which are similar to but distinct from those involved in hypertrophy and heart failure. Among the MI-regulated miRNAs are members of the miR-29 family, which are down-regulated in the region of the heart adjacent to the infarct. The miR-29 family targets a cadre of mRNAs that encode proteins involved in fibrosis, including multiple collagens, fibrillins, and elastin. Thus, down-regulation of miR-29 would be predicted to derepress the expression of these mRNAs and enhance the fibrotic response. Indeed, down-regulation of miR-29 with anti-miRs in vitro and in vivo induces the expression of collagens, whereas over-expression of miR-29 in fibroblasts reduces collagen expression. We conclude that miR-29 acts as a regulator of cardiac fibrosis and represents a potential therapeutic target for tissue fibrosis in general.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of physiological and pathological cardiac hypertrophy

            Cardiomyocytes exit the cell cycle and become terminally differentiated soon after birth. Therefore, in the adult heart, instead of an increase in cardiomyocyte number, individual cardiomyocytes increase in size, and the heart develops hypertrophy to reduce ventricular wall stress and maintain function and efficiency in response to an increased workload. There are two types of hypertrophy: physiological and pathological. Hypertrophy initially develops as an adaptive response to physiological and pathological stimuli, but pathological hypertrophy generally progresses to heart failure. Each form of hypertrophy is regulated by distinct cellular signalling pathways. In the past decade, a growing number of studies have suggested that previously unrecognized mechanisms, including cellular metabolism, proliferation, non-coding RNAs, immune responses, translational regulation, and epigenetic modifications, positively or negatively regulate cardiac hypertrophy. In this Review, we summarize the underlying molecular mechanisms of physiological and pathological hypertrophy, with a particular emphasis on the role of metabolic remodelling in both forms of cardiac hypertrophy, and we discuss how the current knowledge on cardiac hypertrophy can be applied to develop novel therapeutic strategies to prevent or reverse pathological hypertrophy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation.

              Recent investigations have implicated long antisense noncoding RNAs in the epigenetic regulation of chromosomal domains. Here we show that Kcnq1ot1 is an RNA polymerase II-encoded, 91 kb-long, moderately stable nuclear transcript and that its stability is important for bidirectional silencing of genes in the Kcnq1 domain. Kcnq1ot1 interacts with chromatin and with the H3K9- and H3K27-specific histone methyltransferases G9a and the PRC2 complex in a lineage-specific manner. This interaction correlates with the presence of extended regions of chromatin enriched with H3K9me3 and H3K27me3 in the Kcnq1 domain in placenta, whereas fetal liver lacks both chromatin interactions and heterochromatin structures. In addition, the Kcnq1 domain is more often found in contact with the nucleolar compartment in placenta than in liver. Taken together, our data describe a mechanism whereby Kcnq1ot1 establishes lineage-specific transcriptional silencing patterns through recruitment of chromatin remodeling complexes and maintenance of these patterns through subsequent cell divisions occurs via targeting the associated regions to the perinucleolar compartment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                10 July 2020
                2020
                : 11
                : 798
                Affiliations
                [1] 1Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester , Manchester, United Kingdom
                [2] 2Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University , Nanjing, China
                Author notes

                Edited by: Gaetano Santulli, Columbia University, United States

                Reviewed by: Jason N. Peart, Griffith University, Australia; Meijing Wang, Indiana University Bloomington School of Medicine, United States

                *Correspondence: Pablo Binder, pablo.binder@ 123456manchester.ac.uk

                These authors have contributed equally to this work

                This article was submitted to Clinical and Translational Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2020.00798
                7365882
                32754048
                9a73e876-f7bf-471e-a9fa-ed1eba29c27f
                Copyright © 2020 Collins, Binder, Chen and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 March 2020
                : 15 June 2020
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 179, Pages: 20, Words: 0
                Categories
                Physiology
                Review

                Anatomy & Physiology
                micrornas,long non-coding rnas,cardiovascular disease,therapy,proteostasis
                Anatomy & Physiology
                micrornas, long non-coding rnas, cardiovascular disease, therapy, proteostasis

                Comments

                Comment on this article