20
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Adjuvants on the Immunogenicity and Efficacy of a Zika Virus Envelope Domain III Subunit Vaccine

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zika virus (ZIKV), a mosquito-borne flavivirus, has attracted global attention due to its close association with congenital Zika syndrome and neurological diseases, and transmission through additional routes, such as sexual contact. Currently there are no vaccines approved for ZIKV, and thus, there is an urgent need to develop an effective and safe ZIKV vaccine. Domain III (DIII) of the ZIKV envelope (E) protein is an important vaccine target, and a vaccine developed using a mutant DIII of E (EDIII) protein protects adult and pregnant mice, and unborn offspring, against ZIKV infection. Here, we have used immunocompetent BALB/c mice treated with anti-interferon-α/β receptor 1 (Ifnar1) antibodies to investigate whether three adjuvants (aluminum (Alum), monophosphoryl lipid A (MPL), and MF59), either alone or in combination, could improve the efficacy of this EDIII subunit vaccine. Our data show that, although vaccine formulated with a single adjuvant induced a specific antibody and cellular immune response, and reduced viral load in mice challenged with ZIKV, the combination of Alum and MPL adjuvants led to a more robust and balanced immune response, stronger neutralizing activity against three recent ZIKV human strains, and greater protection against a high-dose ZIKV challenge. Particularly, the combination of Alum with MPL significantly reduced viral titers and viral RNA copy numbers in sera and tissues, including the male reproductive organs. Overall, this study has identified the combination of Alum and MPL as the most effective adjuvant for ZIKV EDIII subunit vaccines, and it has important implications for subunit vaccines against other enveloped viruses, including non-ZIKV flaviviruses.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain–Barré Syndrome: Systematic Review

          Background The World Health Organization (WHO) stated in March 2016 that there was scientific consensus that the mosquito-borne Zika virus was a cause of the neurological disorder Guillain–Barré syndrome (GBS) and of microcephaly and other congenital brain abnormalities based on rapid evidence assessments. Decisions about causality require systematic assessment to guide public health actions. The objectives of this study were to update and reassess the evidence for causality through a rapid and systematic review about links between Zika virus infection and (a) congenital brain abnormalities, including microcephaly, in the foetuses and offspring of pregnant women and (b) GBS in any population, and to describe the process and outcomes of an expert assessment of the evidence about causality. Methods and Findings The study had three linked components. First, in February 2016, we developed a causality framework that defined questions about the relationship between Zika virus infection and each of the two clinical outcomes in ten dimensions: temporality, biological plausibility, strength of association, alternative explanations, cessation, dose–response relationship, animal experiments, analogy, specificity, and consistency. Second, we did a systematic review (protocol number CRD42016036693). We searched multiple online sources up to May 30, 2016 to find studies that directly addressed either outcome and any causality dimension, used methods to expedite study selection, data extraction, and quality assessment, and summarised evidence descriptively. Third, WHO convened a multidisciplinary panel of experts who assessed the review findings and reached consensus statements to update the WHO position on causality. We found 1,091 unique items up to May 30, 2016. For congenital brain abnormalities, including microcephaly, we included 72 items; for eight of ten causality dimensions (all except dose–response relationship and specificity), we found that more than half the relevant studies supported a causal association with Zika virus infection. For GBS, we included 36 items, of which more than half the relevant studies supported a causal association in seven of ten dimensions (all except dose–response relationship, specificity, and animal experimental evidence). Articles identified nonsystematically from May 30 to July 29, 2016 strengthened the review findings. The expert panel concluded that (a) the most likely explanation of available evidence from outbreaks of Zika virus infection and clusters of microcephaly is that Zika virus infection during pregnancy is a cause of congenital brain abnormalities including microcephaly, and (b) the most likely explanation of available evidence from outbreaks of Zika virus infection and GBS is that Zika virus infection is a trigger of GBS. The expert panel recognised that Zika virus alone may not be sufficient to cause either congenital brain abnormalities or GBS but agreed that the evidence was sufficient to recommend increased public health measures. Weaknesses are the limited assessment of the role of dengue virus and other possible cofactors, the small number of comparative epidemiological studies, and the difficulty in keeping the review up to date with the pace of publication of new research. Conclusions Rapid and systematic reviews with frequent updating and open dissemination are now needed both for appraisal of the evidence about Zika virus infection and for the next public health threats that will emerge. This systematic review found sufficient evidence to say that Zika virus is a cause of congenital abnormalities and is a trigger of GBS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fc-fusion proteins: new developments and future perspectives

            Since the first description in 1989 of CD4-Fc-fusion antagonists that inhibit human immune deficiency virus entry into T cells, Fc-fusion proteins have been intensely investigated for their effectiveness to curb a range of pathologies, with several notable recent successes coming to market. These promising outcomes have stimulated the development of novel approaches to improve their efficacy and safety, while also broadening their clinical remit to other uses such as vaccines and intravenous immunoglobulin therapy. This increased attention has also led to non-clinical applications of Fc-fusions, such as affinity reagents in microarray devices. Here we discuss recent results and more generally applicable strategies to improve Fc-fusion proteins for each application, with particular attention to the newer, less charted areas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant.

              The development of non-infectious subunit vaccines greatly increases the safety of prophylactic immunization, but also reinforces the need for a new generation of immunostimulatory adjuvants. Because adverse effects are a paramount concern in prophylactic immunization, few new adjuvants have received approval for use anywhere in the developed world. The vaccine adjuvant monophosphoryl lipid A is a detoxified form of the endotoxin lipopolysaccharide, and is among the first of a new generation of Toll-like receptor agonists likely to be used as vaccine adjuvants on a mass scale in human populations. Much remains to be learned about this compound's mechanism of action, but recent developments have made clear that it is unlikely to be simply a weak version of lipopolysaccharide. Instead, monophosphoryl lipid A's structure seems to have fortuitously retained several functions needed for stimulation of adaptive immune responses, while shedding those associated with pro-inflammatory side effects.
                Bookmark

                Author and article information

                Journal
                Vaccines (Basel)
                Vaccines (Basel)
                vaccines
                Vaccines
                MDPI
                2076-393X
                27 October 2019
                December 2019
                : 7
                : 4
                : 161
                Affiliations
                [1 ]Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
                [2 ]Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
                [3 ]State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
                [4 ]Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
                Author notes
                [* ]Correspondence: ldu@ 123456nybc.org (L.D.); chuanlaishen@ 123456seu.edu.cn (C.S.); Tel.: +1-212-570-3459 (L.D.); +86-137-7662-9706 (C.S.)
                [†]

                These authors contributed equally to this article.

                Author information
                https://orcid.org/0000-0002-9864-8993
                https://orcid.org/0000-0002-3748-3742
                Article
                vaccines-07-00161
                10.3390/vaccines7040161
                6963592
                31717890
                9a785038-b60b-4c74-b577-cc0a972f36b1
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 September 2019
                : 24 October 2019
                Categories
                Article

                flavivirus,zika virus,envelope domain iii,immune response,protective efficacy,adjuvants,subunit vaccine

                Comments

                Comment on this article