18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Commensal Bacterium Promotes Virulence of an Opportunistic Pathogen via Cross-Respiration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Bacteria rarely inhabit infection sites alone, instead residing in diverse, multispecies communities. Despite this fact, bacterial pathogenesis studies primarily focus on monoculture infections, overlooking how community interactions influence the course of disease. In this study, we used global mutant fitness profiling (transposon sequencing [Tn-seq]) to determine the genetic requirements for the pathogenic bacterium Aggregatibacter actinomycetemcomitans to cause disease when coinfecting with the commensal bacterium Streptococcus gordonii. Our results show that S. gordonii extensively alters A. actinomycetemcomitans requirements for virulence factors and biosynthetic pathways during infection. In addition, we discovered that the presence of S. gordonii enhances the bioavailability of oxygen during infection, allowing A. actinomycetemcomitans to shift from a primarily fermentative to a respiratory metabolism that enhances its growth yields and persistence. Mechanistically, respiratory metabolism enhances the fitness of A. actinomycetemcomitans in vivo by increasing ATP yields via central metabolism and creating a proton motive force. Our results reveal that, similar to cross-feeding, where one species provides another species with a nutrient, commensal bacteria can also provide electron acceptors that promote the respiratory growth and fitness of pathogens in vivo, an interaction that we term cross-respiration.

          IMPORTANCE

          Commensal bacteria can enhance the virulence of pathogens in mixed-species infections. However, knowledge of the mechanisms underlying this clinically relevant phenomenon is lacking. To bridge this gap, we comprehensively determined the genes a pathogen needs to establish coinfection with a commensal. Our findings show that the metabolism of the pathogen is low-energy-yielding in monoinfection, but in coinfection, the commensal improves the fitness of the pathogen by increasing the bioavailability of oxygen, thereby shifting the pathogen toward a high-energy-yielding metabolism. Similar to cross-feeding, this interaction, which we term cross-respiration, illustrates that commensal bacteria can provide electron acceptors that enhance the virulence of pathogens during infection.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Tn-seq; high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms

          Biological pathways are structured in complex networks of interacting genes. Solving the architecture of such networks may provide valuable information, such as how microorganisms cause disease. Here we present a method (Tn-seq) for accurately determining quantitative genetic interactions on a genome-wide scale in microorganisms. Tn-seq is based on the assembly of a saturated Mariner transposon insertion library. After library selection, changes in frequency of each insertion mutant are determined by sequencing of the flanking regions en masse. These changes are used to calculate each mutant’s fitness. Fitness was determined for each gene of the gram-positive bacterium Streptococcus pneumoniae, a causative agent of pneumonia and meningitis. A genome-wide screen for genetic interactions identified both alleviating and aggravating interactions that could be further divided into seven distinct categories. Due to the wide activity of the Mariner transposon, Tn-seq has the potential to contribute to the exploration of complex pathways across many different species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Host-derived nitrate boosts growth of E. coli in the inflamed gut.

            Changes in the microbial community structure are observed in individuals with intestinal inflammatory disorders. These changes are often characterized by a depletion of obligate anaerobic bacteria, whereas the relative abundance of facultative anaerobic Enterobacteriaceae increases. The mechanisms by which the host response shapes the microbial community structure, however, remain unknown. We show that nitrate generated as a by-product of the inflammatory response conferred a growth advantage to the commensal bacterium Escherichia coli in the large intestine of mice. Mice deficient in inducible nitric oxide synthase did not support the growth of E. coli by nitrate respiration, suggesting that the nitrate generated during inflammation was host-derived. Thus, the inflammatory host response selectively enhances the growth of commensal Enterobacteriaceae by generating electron acceptors for anaerobic respiration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular aspects of bacterial pH sensing and homeostasis.

              Diverse mechanisms for pH sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments with a pH of below 3 or above 11. Here, we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH homeostasis. These insights may help us to target certain pathogens more accurately and to harness the capacities of environmental bacteria more efficiently.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                28 June 2016
                May-Jun 2016
                : 7
                : 3
                : e00782-16
                Affiliations
                [a ]Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
                [b ]Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
                [c ]Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
                Author notes
                Address correspondence to Marvin Whiteley, mwhiteley@ 123456austin.utexas.edu .

                Editor Michael S. Gilmore, Harvard Medical School

                This article is a direct contribution from a Fellow of the American Academy of Microbiology. External solicited reviewers: Vanessa Sperandio, UT Southwestern Med Center Dallas; Donald Demuth, University of Louisville School of Dentistry.

                Article
                mBio00782-16
                10.1128/mBio.00782-16
                4916382
                27353758
                9a91d953-be61-4b37-b636-2e61a63cdbb3
                Copyright © 2016 Stacy et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 4 May 2016
                : 12 May 2016
                Page count
                supplementary-material: 10, Figures: 5, Tables: 0, Equations: 0, References: 38, Pages: 10, Words: 7697
                Funding
                This work was supported by National Institutes of Health grant R01DE023193 (to M.W. and R.J.L.), R01DE020100 (to M.W. and K.P.R.), and F31DE024931 (to A.S.). M.W. is a Burroughs Wellcome Investigator in the Pathogenesis of Infectious Disease. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Custom metadata
                May/June 2016

                Life sciences
                Life sciences

                Comments

                Comment on this article