123
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular matrix (ECM) molecules are responsible for structural and biochemical support, as well as for regulation of molecular signalling and tissue repair in many organ structures, including the pancreas. In pancreatic islets, collagen type IV and VI, and laminins are the most abundant molecules, but other ECM molecules are also present. The ECM interacts with specific combinations of integrin α/β heterodimers on islet cells and guides many cellular processes. More specifically, some ECM molecules are involved in beta cell survival, function and insulin production, while others can fine tune the susceptibility of islet cells to cytokines. Further, some ECM induce release of growth factors to facilitate tissue repair. During enzymatic isolation of islets for transplantation, the ECM is damaged, impacting islet function. However, restoration of the ECM in human islets (for example by adding ECM to the interior of immunoprotective capsules) has been shown to enhance islet function. Here, we provide current insight into the role of ECM molecules in islet function and discuss the clinical potential of ECM manipulation to enhance pancreatic islet function and survival.

          Electronic supplementary material

          The online version of this article (10.1007/s00125-017-4524-8) contains a slideset of the figures for download, which is available to authorised users.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          RGD and other recognition sequences for integrins.

          Proteins that contain the Arg-Gly-Asp (RGD) attachment site, together with the integrins that serve as receptors for them, constitute a major recognition system for cell adhesion. The RGD sequence is the cell attachment site of a large number of adhesive extracellular matrix, blood, and cell surface proteins, and nearly half of the over 20 known integrins recognize this sequence in their adhesion protein ligands. Some other integrins bind to related sequences in their ligands. The integrin-binding activity of adhesion proteins can be reproduced by short synthetic peptides containing the RGD sequence. Such peptides promote cell adhesion when insolubilized onto a surface, and inhibit it when presented to cells in solution. Reagents that bind selectively to only one or a few of the RGD-directed integrins can be designed by cyclizing peptides with selected sequences around the RGD and by synthesizing RGD mimics. As the integrin-mediated cell attachment influences and regulates cell migration, growth, differentiation, and apoptosis, the RGD peptides and mimics can be used to probe integrin functions in various biological systems. Drug design based on the RGD structure may provide new treatments for diseases such as thrombosis, osteoporosis, and cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disruption of epithelial cell-matrix interactions induces apoptosis

            Cell-matrix interactions have major effects upon phenotypic features such as gene regulation, cytoskeletal structure, differentiation, and aspects of cell growth control. Programmed cell death (apoptosis) is crucial for maintaining appropriate cell number and tissue organization. It was therefore of interest to determine whether cell- matrix interactions affect apoptosis. The present report demonstrates that apoptosis was induced by disruption of the interactions between normal epithelial cells and extracellular matrix. We have termed this phenomenon "anoikis." Overexpression of bcl-2 protected cells against anoikis. Cellular sensitivity to anoikis was apparently regulated: (a) anoikis did not occur in normal fibroblasts; (b) it was abrogated in epithelial cells by transformation with v-Ha-ras, v-src, or treatment with phorbol ester; (c) sensitivity to anoikis was conferred upon HT1080 cells or v-Ha-ras-transformed MDCK cells by reverse- transformation with adenovirus E1a; (d) anoikis in MDCK cells was alleviated by the motility factor, scatter factor. The results suggest that the circumvention of anoikis accompanies the acquisition of anchorage independence or cell motility.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities.

              Type 1 and type 2 diabetes are characterized by progressive beta-cell failure. Apoptosis is probably the main form of beta-cell death in both forms of the disease. It has been suggested that the mechanisms leading to nutrient- and cytokine-induced beta-cell death in type 2 and type 1 diabetes, respectively, share the activation of a final common pathway involving interleukin (IL)-1beta, nuclear factor (NF)-kappaB, and Fas. We review herein the similarities and differences between the mechanisms of beta-cell death in type 1 and type 2 diabetes. In the insulitis lesion in type 1 diabetes, invading immune cells produce cytokines, such as IL-1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma. IL-1beta and/or TNF-alpha plus IFN-gamma induce beta-cell apoptosis via the activation of beta-cell gene networks under the control of the transcription factors NF-kappaB and STAT-1. NF-kappaB activation leads to production of nitric oxide (NO) and chemokines and depletion of endoplasmic reticulum (ER) calcium. The execution of beta-cell death occurs through activation of mitogen-activated protein kinases, via triggering of ER stress and by the release of mitochondrial death signals. Chronic exposure to elevated levels of glucose and free fatty acids (FFAs) causes beta-cell dysfunction and may induce beta-cell apoptosis in type 2 diabetes. Exposure to high glucose has dual effects, triggering initially "glucose hypersensitization" and later apoptosis, via different mechanisms. High glucose, however, does not induce or activate IL-1beta, NF-kappaB, or inducible nitric oxide synthase in rat or human beta-cells in vitro or in vivo in Psammomys obesus. FFAs may cause beta-cell apoptosis via ER stress, which is NF-kappaB and NO independent. Thus, cytokines and nutrients trigger beta-cell death by fundamentally different mechanisms, namely an NF-kappaB-dependent mechanism that culminates in caspase-3 activation for cytokines and an NF-kappaB-independent mechanism for nutrients. This argues against a unifying hypothesis for the mechanisms of beta-cell death in type 1 and type 2 diabetes and suggests that different approaches will be required to prevent beta-cell death in type 1 and type 2 diabetes.
                Bookmark

                Author and article information

                Contributors
                l.a.llacua.carrasco@umcg.nl
                Journal
                Diabetologia
                Diabetologia
                Diabetologia
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0012-186X
                1432-0428
                6 January 2018
                6 January 2018
                2018
                : 61
                : 6
                : 1261-1272
                Affiliations
                [1 ]ISNI 0000 0004 0407 1981, GRID grid.4830.f, Section of Immunoendocrinology, Department of Pathology and Medical Biology, , University of Groningen, ; Hanzeplein 1 EA11, 9700 RB Groningen, the Netherlands
                [2 ]University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
                Article
                4524
                10.1007/s00125-017-4524-8
                6449002
                29306997
                9a9f86e6-07bb-4712-9e00-325a75dde88a
                © The Author(s) 2018

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 10 August 2017
                : 18 October 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100008664, Juvenile Diabetes Research Foundation;
                Award ID: 2013-2953
                Categories
                Review
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2018

                Endocrinology & Diabetes
                collagen,cytokines,extracellular matrix,graft,islet,laminin,review
                Endocrinology & Diabetes
                collagen, cytokines, extracellular matrix, graft, islet, laminin, review

                Comments

                Comment on this article