11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Role of Hypothalamic H1 Receptor Antagonism in Antipsychotic-Induced Weight Gain

      , ,  
      CNS Drugs
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Treatment with second generation antipsychotics (SGAs), notably olanzapine and clozapine, causes severe obesity side effects. Antagonism of histamine H1 receptors has been identified as a main cause of SGA-induced obesity, but the molecular mechanisms associated with this antagonism in different stages of SGA-induced weight gain remain unclear. This review aims to explore the potential role of hypothalamic histamine H1 receptors in different stages of SGA-induced weight gain/obesity and the molecular pathways related to SGA-induced antagonism of these receptors. Initial data have demonstrated the importance of hypothalamic H1 receptors in both short- and long-term SGA-induced obesity. Blocking hypothalamic H1 receptors by SGAs activates AMP-activated protein kinase (AMPK), a well-known feeding regulator. During short-term treatment, hypothalamic H1 receptor antagonism by SGAs may activate the AMPK-carnitine palmitoyltransferase 1 signaling to rapidly increase caloric intake and result in weight gain. During long-term SGA treatment, hypothalamic H1 receptor antagonism can reduce thermogenesis, possibly by inhibiting the sympathetic outflows to the brainstem rostral raphe pallidus and rostral ventrolateral medulla, therefore decreasing brown adipose tissue thermogenesis. Additionally, blocking of hypothalamic H1 receptors by SGAs may also contribute to fat accumulation by decreasing lipolysis but increasing lipogenesis in white adipose tissue. In summary, antagonism of hypothalamic H1 receptors by SGAs may time-dependently affect the hypothalamus-brainstem circuits to cause weight gain by stimulating appetite and fat accumulation but reducing energy expenditure. The H1 receptor and its downstream signaling molecules could be valuable targets for the design of new compounds for treating SGA-induced weight gain/obesity.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Blood-brain barrier delivery.

          Neuropharmaceutics is the largest potential growth sector of the pharmaceutical industry. However, this growth is blocked by the problem of the blood-brain barrier (BBB). Essentially 100% of large-molecule drugs and >98% of small-molecule drugs do not cross the BBB. The BBB can be traversed because there are multiple endogenous transporters within this barrier. Therefore, brain drug development programs of the future need to be re-configured so that drugs are formulated to enable transport into the brain via endogenous BBB transporters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles.

            Atypical antipsychotic drugs offer several notable benefits over typical antipsychotics, including greater improvement in negative symptoms, cognitive function, prevention of deterioration, and quality of life, and fewer extrapyramidal symptoms (EPS). However, concerns about EPS have been replaced by concerns about other side effects, such as weight gain, glucose dysregulation and dyslipidemia. These side effects are associated with potential long-term cardiovascular health risks, decreased medication adherence, and may eventually lead to clinical deterioration. Despite a greater understanding of the biochemical effects of these drugs in recent years, the pharmacological mechanisms underlying their various therapeutic properties and related side effects remain unclear. Besides dopamine D(2) receptor antagonism, a characteristic feature of all atypical antipsychotic drugs, these agents also bind to a range of non-dopaminergic targets, including serotonin, glutamate, histamine, alpha-adrenergic and muscarinic receptors. This review examines the potential contribution of different receptors to metabolic side effects associated with atypical antipsychotic treatment for all seven agents currently marketed in the United States (risperidone, olanzapine, quetiapine, ziprasidone, aripiprazole, paliperidone and clozapine) and another agent (bifeprunox) in clinical development at the time of this publication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AMPK: a metabolic gauge regulating whole-body energy homeostasis.

              AMP-activated protein kinase (AMPK) is the downstream component of a kinase cascade that acts as a gauge of cellular energy levels. Over the last few years, accumulating evidence has demonstrated that AMPK is also involved in the regulation of energy balance at the whole-body level by responding to hormones and nutrient signals, which leads to changes in energy homeostasis. The physiological relevance of this new role of AMPK is demonstrated by the fact that impairment of AMPK function is associated with metabolic alterations, insulin resistance, obesity, hormonal disorders and cardiovascular disease. Here, we summarize the role of AMPK in the regulation of energy homeostasis. Understanding this key enzyme and its tissue-specific regulation will provide new targets for the treatment of metabolic disorders.
                Bookmark

                Author and article information

                Journal
                CNS Drugs
                CNS Drugs
                Springer Science and Business Media LLC
                1172-7047
                1179-1934
                June 2013
                May 3 2013
                June 2013
                : 27
                : 6
                : 423-434
                Article
                10.1007/s40263-013-0062-1
                23640535
                9aab9118-3036-43d8-8e44-d40ce6df735a
                © 2013

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article