21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We previously demonstrated that in addition to generating an antigen-specific immune response, Listeria monocytogenes (Lm)-based immunotherapy significantly reduces the ratio of regulatory T cells (Tregs)/CD4 + and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. Since Lm-based immunotherapy is able to inhibit the immune suppressive environment, we hypothesized that combining this treatment with agonist antibody to a co-stimulatory receptor that would further boost the effector arm of immunity will result in significant improvement of anti-tumor efficacy of treatment.

          Methods

          Here we tested the immune and therapeutic efficacy of Listeria-based immunotherapy combination with agonist antibody to glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) in TC-1 mouse tumor model. We evaluated the potency of combination on tumor growth and survival of treated animals and profiled tumor microenvironment for effector and suppressor cell populations.

          Results

          We demonstrate that combination of Listeria-based immunotherapy with agonist antibody to GITR synergizes to improve immune and therapeutic efficacy of treatment in a mouse tumor model. We show that this combinational treatment leads to significant inhibition of tumor-growth, prolongs survival and leads to complete regression of established tumors in 60% of treated animals. We determined that this therapeutic benefit of combinational treatment is due to a significant increase in tumor infiltrating effector CD4 + and CD8 + T cells along with a decrease of inhibitory cells.

          Conclusion

          To our knowledge, this is the first study that exploits Lm-based immunotherapy combined with agonist anti-GITR antibody as a potent treatment strategy that simultaneously targets both the effector and suppressor arms of the immune system, leading to significantly improved anti-tumor efficacy. We believe that our findings depicted in this manuscript provide a promising and translatable strategy that can enhance the overall efficacy of cancer immunotherapy.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.

          Vaccination with irradiated B16 melanoma cells expressing either GM-CSF (Gvax) or Flt3-ligand (Fvax) combined with antibody blockade of the negative T-cell costimulatory receptor cytotoxic T-lymphocyte antigen-4 (CTLA-4) promotes rejection of preimplanted tumors. Despite CTLA-4 blockade, T-cell proliferation and cytokine production can be inhibited by the interaction of programmed death-1 (PD-1) with its ligands PD-L1 and PD-L2 or by the interaction of PD-L1 with B7-1. Here, we show that the combination of CTLA-4 and PD-1 blockade is more than twice as effective as either alone in promoting the rejection of B16 melanomas in conjunction with Fvax. Adding alphaPD-L1 to this regimen results in rejection of 65% of preimplanted tumors vs. 10% with CTLA-4 blockade alone. Combination PD-1 and CTLA-4 blockade increases effector T-cell (Teff) infiltration, resulting in highly advantageous Teff-to-regulatory T-cell ratios with the tumor. The fraction of tumor-infiltrating Teffs expressing CTLA-4 and PD-1 increases, reflecting the proliferation and accumulation of cells that would otherwise be anergized. Combination blockade also synergistically increases Teff-to-myeloid-derived suppressor cell ratios within B16 melanomas. IFN-gamma production increases in both the tumor and vaccine draining lymph nodes, as does the frequency of IFN-gamma/TNF-alpha double-producing CD8(+) T cells within the tumor. These results suggest that combination blockade of the PD-1/PD-L1- and CTLA-4-negative costimulatory pathways allows tumor-specific T cells that would otherwise be inactivated to continue to expand and carry out effector functions, thereby shifting the tumor microenvironment from suppressive to inflammatory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self.

            Naturally arising CD25(+)CD4(+) regulatory T cells actively maintain immunological self-tolerance. Deficiency in or dysfunction of these cells can be a cause of autoimmune disease. A reduction in their number or function can also elicit tumor immunity, whereas their antigen-specific population expansion can establish transplantation tolerance. They are therefore a good target for designing ways to induce or abrogate immunological tolerance to self and non-self antigens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance.

              CD25(+)CD4(+) regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance. We show here that glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR, also known as TNFRSF18)--a member of the tumor necrosis factor-nerve growth factor (TNF-NGF) receptor gene superfamily--is predominantly expressed on CD25(+)CD4(+) T cells and on CD25(+)CD4(+)CD8(-) thymocytes in normal naïve mice. We found that stimulation of GITR abrogated CD25(+)CD4(+) T cell-mediated suppression. In addition, removal of GITR-expressing T cells or administration of a monoclonal antibody to GITR produced organ-specific autoimmune disease in otherwise normal mice. Thus, GITR plays a key role in dominant immunological self-tolerance maintained by CD25(+)CD4(+) regulatory T cells and could be a suitable molecular target for preventing or treating autoimmune disease.
                Bookmark

                Author and article information

                Contributors
                rajeevshrimali@yahoo.com
                shahmad@augusta.edu
                zuzana@berronginc.com
                okoevg@gmail.com
                adamatevosyan@gmail.com
                GSHOJAERAZAVI@augusta.edu
                Petit@advaxis.com
                segupta@augusta.edu
                mmkrtichyan@augusta.edu
                706-721-0570 , skhleif@augusta.edu
                Journal
                J Immunother Cancer
                J Immunother Cancer
                Journal for Immunotherapy of Cancer
                BioMed Central (London )
                2051-1426
                15 August 2017
                15 August 2017
                2017
                : 5
                : 64
                Affiliations
                [1 ]ISNI 0000 0001 2284 9329, GRID grid.410427.4, , Augusta University, Georgia Cancer Center, ; 1410 Laney Walker Blvd, Augusta, GA 30912 USA
                [2 ]Advaxis Immunotherapies, Princeton, NJ 08540 USA
                Article
                266
                10.1186/s40425-017-0266-x
                5557467
                28807056
                9aaedbf0-3440-4fe5-8a6b-fbd8db425070
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 31 May 2017
                : 12 July 2017
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2017

                listeria vaccine,lm-llo-e7,anti-gitr antibody,co-stimulation,immune tolerance,immunotherapy

                Comments

                Comment on this article