7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microglia, the resident immune cell of the brain, can be eliminated via pharmacological inhibition of the colony‐stimulating factor 1 receptor (CSF1R). Withdrawal of CSF1R inhibition then stimulates microglial repopulation, effectively replacing the microglial compartment. In the aged brain, microglia take on a “primed” phenotype and studies indicate that this coincides with age‐related cognitive decline. Here, we investigated the effects of replacing the aged microglial compartment with new microglia using CSF1R inhibitor‐induced microglial repopulation. With 28 days of repopulation, replacement of resident microglia in aged mice (24 months) improved spatial memory and restored physical microglial tissue characteristics (cell densities and morphologies) to those found in young adult animals (4 months). However, inflammation‐related gene expression was not broadly altered with repopulation nor the response to immune challenges. Instead, microglial repopulation resulted in a reversal of age‐related changes in neuronal gene expression, including expression of genes associated with actin cytoskeleton remodeling and synaptogenesis. Age‐related changes in hippocampal neuronal complexity were reversed with both microglial elimination and repopulation, while microglial elimination increased both neurogenesis and dendritic spine densities. These changes were accompanied by a full rescue of age‐induced deficits in long‐term potentiation with microglial repopulation. Thus, several key aspects of the aged brain can be reversed by acute noninvasive replacement of microglia.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo.

          Microglial cells represent the immune system of the mammalian brain and therefore are critically involved in various injuries and diseases. Little is known about their role in the healthy brain and their immediate reaction to brain damage. By using in vivo two-photon imaging in neocortex, we found that microglial cells are highly active in their presumed resting state, continually surveying their microenvironment with extremely motile processes and protrusions. Furthermore, blood-brain barrier disruption provoked immediate and focal activation of microglia, switching their behavior from patroling to shielding of the injured site. Microglia thus are busy and vigilant housekeepers in the adult brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic pruning by microglia is necessary for normal brain development.

            Microglia are highly motile phagocytic cells that infiltrate and take up residence in the developing brain, where they are thought to provide a surveillance and scavenging function. However, although microglia have been shown to engulf and clear damaged cellular debris after brain insult, it remains less clear what role microglia play in the uninjured brain. Here, we show that microglia actively engulf synaptic material and play a major role in synaptic pruning during postnatal development in mice. These findings link microglia surveillance to synaptic maturation and suggest that deficits in microglia function may contribute to synaptic abnormalities seen in some neurodevelopmental disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New tools for studying microglia in the mouse and human CNS.

              The specific function of microglia, the tissue resident macrophages of the brain and spinal cord, has been difficult to ascertain because of a lack of tools to distinguish microglia from other immune cells, thereby limiting specific immunostaining, purification, and manipulation. Because of their unique developmental origins and predicted functions, the distinction of microglia from other myeloid cells is critically important for understanding brain development and disease; better tools would greatly facilitate studies of microglia function in the developing, adult, and injured CNS. Here, we identify transmembrane protein 119 (Tmem119), a cell-surface protein of unknown function, as a highly expressed microglia-specific marker in both mouse and human. We developed monoclonal antibodies to its intracellular and extracellular domains that enable the immunostaining of microglia in histological sections in healthy and diseased brains, as well as isolation of pure nonactivated microglia by FACS. Using our antibodies, we provide, to our knowledge, the first RNAseq profiles of highly pure mouse microglia during development and after an immune challenge. We used these to demonstrate that mouse microglia mature by the second postnatal week and to predict novel microglial functions. Together, we anticipate these resources will be valuable for the future study and understanding of microglia in health and disease.
                Bookmark

                Author and article information

                Contributors
                kngreen@uci.edu
                Journal
                Aging Cell
                Aging Cell
                10.1111/(ISSN)1474-9726
                ACEL
                Aging Cell
                John Wiley and Sons Inc. (Hoboken )
                1474-9718
                1474-9726
                02 October 2018
                December 2018
                : 17
                : 6 ( doiID: 10.1111/acel.2018.17.issue-6 )
                : e12832
                Affiliations
                [ 1 ] Department of Neurobiology and Behavior University of California Irvine California
                [ 2 ] Institute for Memory Impairments and Neurological Disorders (UCI MIND) Irvine California
                [ 3 ] University College London London UK
                [ 4 ] The Francis Crick Institute London UK
                [ 5 ] Plexxikon Inc Berkeley California
                Author notes
                [*] [* ] Correspondence

                Kim N. Green, Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA.

                Email: kngreen@ 123456uci.edu

                [†]

                These authors contributed equally to this study.

                Article
                ACEL12832
                10.1111/acel.12832
                6260908
                30276955
                9ab459fb-92cf-4e20-a568-dbecba5db33e
                © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 March 2018
                : 02 July 2018
                : 21 July 2018
                Page count
                Figures: 6, Tables: 0, Pages: 14, Words: 7375
                Funding
                Funded by: National Institute of Aging
                Award ID: AG016573
                Award ID: AG00096
                Funded by: Glenn Family Foundation
                Funded by: National Institute of Neurological Disorders and Stroke
                Award ID: R01NS083801
                Funded by: Alzheimer's Association
                Award ID: AARF-16-442762
                Funded by: Alzheimer's Society UK
                Award ID: 172065
                Funded by: American Foundation for Aging Research
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                acel12832
                December 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.5.3 mode:remove_FC converted:28.11.2018

                Cell biology
                aging,colony‐stimulating factor 1 receptor,long‐term potentiation,microglia,plx5622,repopulation

                Comments

                Comment on this article