25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lift Enhancement by Dynamically Changing Wingspan in Forward Flapping Flight

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stretching and retracting wingspan has been widely observed in the flight of birds and bats, and its effects on the aerodynamic performance particularly lift generation are intriguing. The rectangular flat-plate flapping wing with a sinusoidally stretching and retracting wingspan is proposed as a simple model of biologically-inspired dynamic morphing wings. Direct numerical simulations of the low-Reynolds-number flows around the flapping morphing wing in a parametric space are conducted by using immersed boundary method. It is found that the instantaneous and time-averaged lift coefficients of the wing can be significantly enhanced by dynamically changing wingspan in a flapping cycle. The lift enhancement is caused not only by changing the lifting surface area, but also manipulating the flow structures that are responsible to the generation of the vortex lift. The physical mechanisms behind the lift enhancement are explored by examining the three-dimensional flow structures around the flapping wing.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Wing rotation and the aerodynamic basis of insect flight.

          The enhanced aerodynamic performance of insects results from an interaction of three distinct yet interactive mechanisms: delayed stall, rotational circulation, and wake capture. Delayed stall functions during the translational portions of the stroke, when the wings sweep through the air with a large angle of attack. In contrast, rotational circulation and wake capture generate aerodynamic forces during stroke reversals, when the wings rapidly rotate and change direction. In addition to contributing to the lift required to keep an insect aloft, these two rotational mechanisms provide a potent means by which the animal can modulate the direction and magnitude of flight forces during steering maneuvers. A comprehensive theory incorporating both translational and rotational mechanisms may explain the diverse patterns of wing motion displayed by different species of insects.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            IMMERSED BOUNDARY METHODS

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Leading-edge vortices in insect flight

                Bookmark

                Author and article information

                Journal
                10 September 2013
                Article
                10.1063/1.4884130
                1309.2726
                9ab4e4a4-eed3-432d-89a9-21289df89487

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                56 pages, 23 figures
                physics.flu-dyn

                Comments

                Comment on this article