10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes, small (30–150 nm) extracellular vesicles (EVs) isolated from plasma of patients with acute myeloid leukemia (AML) carry leukemia-associated antigens and multiple inhibitory molecules. Circulating exosomes can deliver suppressive cargos to immune recipient cells, inhibiting anti-tumor activities. Pre-therapy plasma of refractory/relapsed AML patients contains elevated levels of immunosuppressive exosomes which interfere with anti-leukemia functions of activated immune cells. We show that exosomes isolated from pre-therapy plasma of the AML patients receiving adoptive NK-92 cell therapy block anti-leukemia cytotoxicity of NK-92 cells and other NK-92 cell functions. NK-92 cells do not internalize AML exosomes. Instead, signaling via surface receptors expressed on NK-92 cells, AML exosomes simultaneously deliver multiple inhibitory ligands to the cognate receptors. The signals are processed downstream and activate multiple suppressive pathways in NK-92 cells. AML exosomes reprogram NK-92 cells, interfering with their anti-leukemia functions and reducing the therapeutic potential of adoptive cell transfers. Plasma-derived exosomes interfere with immune cells used for adoptive cell therapy and may limit expected therapeutic benefits of adoptive cell therapy.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Extracellular vesicles: Exosomes, microvesicles, and friends

          Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake.

            Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants.

              T cells that accompany allogeneic hematopoietic grafts for treating leukemia enhance engraftment and mediate the graft-versus-leukemia effect. Unfortunately, alloreactive T cells also cause graft-versus-host disease (GVHD). T cell depletion prevents GVHD but increases the risk of graft rejection and leukemic relapse. In human transplants, we show that donor-versus-recipient natural killer (NK)-cell alloreactivity could eliminate leukemia relapse and graft rejection and protect patients against GVHD. In mice, the pretransplant infusion of alloreactive NK cells obviated the need for high-intensity conditioning and reduced GVHD. NK cell alloreactivity may thus provide a powerful tool for enhancing the efficacy and safety of allogeneic hematopoietic transplantation.
                Bookmark

                Author and article information

                Contributors
                whitesidetl@upmc.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                31 October 2017
                31 October 2017
                2017
                : 7
                : 14684
                Affiliations
                [1 ]ISNI 0000 0004 1936 9000, GRID grid.21925.3d, Department of Pathology, University of Pittsburgh School of Medicine, ; Pittsburgh, PA USA
                [2 ]ISNI 0000 0001 2097 0344, GRID grid.147455.6, Department of Biomedical Engineering, Carnegie Mellon University, ; Pittsburgh, PA USA
                [3 ]ISNI 0000 0001 1089 6558, GRID grid.164971.c, FACS Core Facility, Loyola University School of Medicine, ; Maywood, IL 60153 USA
                [4 ]ISNI 0000 0004 1936 9000, GRID grid.21925.3d, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, ; Pittsburgh, PA USA
                [5 ]ISNI 0000 0004 1936 9000, GRID grid.21925.3d, Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, ; Pittsburgh, PA USA
                [6 ]ISNI 0000 0004 0638 2492, GRID grid.417539.d, UPMC Hillman Cancer Center, ; Pittsburgh, PA USA
                [7 ]ISNI 0000 0004 1936 9000, GRID grid.21925.3d, Department of Medicine, Division of hematology-Oncology, University of Pittsburgh School of Medicine, ; Pittsburgh, PA USA
                Article
                14661
                10.1038/s41598-017-14661-w
                5666018
                29089618
                9ab57a7d-6f95-4623-b3a5-d78d193b23fe
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 June 2017
                : 13 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article