68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review

      therapeutic interaction, robotics, stroke, neurorehabilitation, arm, wrist, hand, upper extremity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Robot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of robotic devices have become commercially available. There is clear evidence that robotic interventions improve upper limb motor scores and strength, but these improvements are often not transferred to performance of activities of daily living. We wish to better understand why. Our systematic review of 74 papers focuses on the targeted stage of recovery, the part of the limb trained, the different modalities used, and the effectiveness of each. The review shows that most of the studies so far focus on training of the proximal arm for chronic stroke patients. About the training modalities, studies typically refer to active, active-assisted and passive interaction. Robot-therapy in active assisted mode was associated with consistent improvements in arm function. More specifically, the use of HRI features stressing active contribution by the patient, such as EMG-modulated forces or a pushing force in combination with spring-damper guidance, may be beneficial. Our work also highlights that current literature frequently lacks information regarding the mechanism about the physical human-robot interaction (HRI). It is often unclear how the different modalities are implemented by different research groups (using different robots and platforms). In order to have a better and more reliable evidence of usefulness for these technologies, it is recommended that the HRI is better described and documented so that work of various teams can be considered in the same group and categories, allowing to infer for more suitable approaches. We propose a framework for categorisation of HRI modalities and features that will allow comparing their therapeutic benefits.

          Related collections

          Most cited references 104

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review.

          The aim of the study was to present a systematic review of studies that investigate the effects of robot-assisted therapy on motor and functional recovery in patients with stroke. A database of articles published up to October 2006 was compiled using the following Medline key words: cerebral vascular accident, cerebral vascular disorders, stroke, paresis, hemiplegia, upper extremity, arm, and robot. References listed in relevant publications were also screened. Studies that satisfied the following selection criteria were included: (1) patients were diagnosed with cerebral vascular accident; (2) effects of robot-assisted therapy for the upper limb were investigated; (3) the outcome was measured in terms of motor and/or functional recovery of the upper paretic limb; and (4) the study was a randomized clinical trial (RCT). For each outcome measure, the estimated effect size (ES) and the summary effect size (SES) expressed in standard deviation units (SDU) were calculated for motor recovery and functional ability (activities of daily living [ADLs]) using fixed and random effect models. Ten studies, involving 218 patients, were included in the synthesis. Their methodological quality ranged from 4 to 8 on a (maximum) 10-point scale. Meta-analysis showed a nonsignificant heterogeneous SES in terms of upper limb motor recovery. Sensitivity analysis of studies involving only shoulder-elbow robotics subsequently demonstrated a significant homogeneous SES for motor recovery of the upper paretic limb. No significant SES was observed for functional ability (ADL). As a result of marked heterogeneity in studies between distal and proximal arm robotics, no overall significant effect in favor of robot-assisted therapy was found in the present meta-analysis. However, subsequent sensitivity analysis showed a significant improvement in upper limb motor function after stroke for upper arm robotics. No significant improvement was found in ADL function. However, the administered ADL scales in the reviewed studies fail to adequately reflect recovery of the paretic upper limb, whereas valid instruments that measure outcome of dexterity of the paretic arm and hand are mostly absent in selected studies. Future research into the effects of robot-assisted therapy should therefore distinguish between upper and lower robotics arm training and concentrate on kinematical analysis to differentiate between genuine upper limb motor recovery and functional recovery due to compensation strategies by proximal control of the trunk and upper limb.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Review of control strategies for robotic movement training after neurologic injury

            There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Compensatory strategies for reaching in stroke.

              A major prerequisite for successful rehabilitation therapy after stroke is the understanding of the mechanisms underlying motor deficits common to these patients. Studies have shown that in stroke patients multijoint pointing movements are characterized by decreased movement speed and increased movement variability, by increased movement segmentation and by spatial and temporal incoordination between adjacent arm joints with respect to healthy subjects. We studied how the damaged nervous system recovers or compensates for deficits in reaching, and correlated reaching deficits with the level of functional impairment. Nine right-hemiparetic subjects and nine healthy subjects participated. All subjects were right-hand dominant. Data from the affected arm of hemiparetic subjects were compared with those from the arm in healthy subjects. Seated subjects made 40 pointing movements with the right arm in a single session. Movements were made from an initial target, for which the arm was positioned alongside the trunk. Then the subject lifted the arm and pointed to the final target, located in front of the subject in the contralateral workspace. Kinematic data from the arm and trunk were recorded with a three-dimensional analysis system. Arm movements in stroke subjects were longer, more segmented, more variable and had larger movement errors. Elbow-shoulder coordination was disrupted and the range of active joint motion was decreased significantly compared with healthy subjects. Some aspects of motor performance (duration, segmentation, accuracy and coordination) were significantly correlated with the level of motor impairment. Despite the fact that stroke subjects encountered all these deficits, even subjects with the most severe motor impairment were able to transport the end-point to the target. All but one subject involved the trunk to accomplish this motor task. In others words, they recruited new degrees of freedom typically not used by healthy subjects. The use of compensatory strategies may be related to the degree of motor impairment: severely to moderately impaired subjects recruited new degrees of freedom to compensate for motor deficits while mildly impaired subjects tended to employ healthy movement patterns. We discuss the possibility that there is a critical level of recovery at which patients switch from a strategy employing new degrees of freedom to one in which motor recovery is produced by improving the management of degrees of freedom characteristic of healthy performance. Our data also suggest that stroke subjects may be able to exploit effectively the redundancy of the motor system.
                Bookmark

                Author and article information

                Journal
                10.1186/1743-0003-11-111
                4108977
                25012864

                http://creativecommons.org/licenses/by/2.0

                Neurosciences

                therapeutic interaction, robotics, stroke, neurorehabilitation, arm, wrist, hand, upper extremity

                Comments

                Comment on this article