22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Formation, Stabilization and Separation of Oil–Water Emulsions: A Review

      , , , , ,
      Processes
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oil–water emulsions are widely generated in industries, which may facilitate some processes (e.g., transportation of heavy oil, storage of milk, synthesis of chemicals or materials, etc.) or lead to serious upgrading or environmental issues (e.g., pipeline plugging, corrosions to equipment, water pollution, soil pollution, etc.). Herein, the sources, classification, formation, stabilization, and separation of oil–water emulsions are systematically summarized. The roles of different interfacially active materials–especially the fine particles–in stabilizing the emulsions have been discussed. The advanced development of micro force measurement technologies for oil–water emulsion investigation has also been presented. To provide insights for future industrial application, the separation of oil–water emulsions by different methods are summarized, as well as the introduction of some industrial equipment and advanced combined processes. The gaps between some demulsification processes and industrial applications are also touched upon. Finally, the development perspectives of oil–water treatment technology are discussed for the purpose of achieving high-efficiency, energy-saving, and multi-functional treatment. We hope this review could bring forward the challenges and opportunities for future research in the fields of petroleum production, coal production, iron making, and environmental protection, etc.

          Related collections

          Most cited references199

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoemulsions: formation, properties and applications.

          Nanoemulsions are kinetically stable liquid-in-liquid dispersions with droplet sizes on the order of 100 nm. Their small size leads to useful properties such as high surface area per unit volume, robust stability, optically transparent appearance, and tunable rheology. Nanoemulsions are finding application in diverse areas such as drug delivery, food, cosmetics, pharmaceuticals, and material synthesis. Additionally, they serve as model systems to understand nanoscale colloidal dispersions. High and low energy methods are used to prepare nanoemulsions, including high pressure homogenization, ultrasonication, phase inversion temperature and emulsion inversion point, as well as recently developed approaches such as bubble bursting method. In this review article, we summarize the major methods to prepare nanoemulsions, theories to predict droplet size, physical conditions and chemical additives which affect droplet stability, and recent applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Environmental Mercury and Its Toxic Effects

            Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Biodiesel processing and production

              Jon Gerpen (2005)
                Bookmark

                Author and article information

                Journal
                PROCCO
                Processes
                Processes
                MDPI AG
                2227-9717
                April 2022
                April 11 2022
                : 10
                : 4
                : 738
                Article
                10.3390/pr10040738
                9ad1311d-9da0-4960-b2a3-4ab9033db75b
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article