13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative analysis of idiA and isiA transcription under iron starvation and oxidative stress in Synechococcus elongatus PCC 7942 wild-type and selected mutants.

      Archives of Microbiology
      Bacterial Proteins, analysis, genetics, Chlorophyll, chemistry, Cyanobacteria, metabolism, Flavodoxin, Fluorescence, Gene Expression Regulation, Bacterial, Hydrogen Peroxide, Iron, Iron-Binding Proteins, Light-Harvesting Protein Complexes, Membrane Proteins, Open Reading Frames, Operon, physiology, Oxidative Stress, Paraquat, Photosystem I Protein Complex, RNA, Messenger, Repressor Proteins, Spectrum Analysis, Transcription Factors, Transcription, Genetic

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the mesophilic cyanobacterium Synechococcus elongatus PCC 7942, iron starvation induces the expression of a number of proteins, including IdiA and IsiA. Whereas IdiA protects photosystem (PS) II under mild iron limitation against oxidative stress in a yet unknown way, prolonged iron starvation leads to the formation of the PS I-IsiA supercomplex. Transcription of idiA is positively regulated by IdiB under iron starvation, and Fur represses transcription of isiAB under iron-sufficient growth conditions. In this report, data are presented suggesting a strong interrelationship between iron homeostasis and oxidative stress in S. elongatus PCC 7942, and showing that transcription of major iron-regulated genes, such as isiA, isiAB, idiA, idiB, mapA, and irpA, is induced by oxidative stress within a few minutes by treatment of cells with hydrogen peroxide or methylviologen. The overall results suggest that isiA/isiAB as well as idiB transcription in response to oxidative stress might be controlled by a transcriptional repressor possibly of the PerR-type. This fact also explains the observed cross-talk between IdiB- and Fur-mediated transcriptional regulation of gene expression and for the role of H(2)O(2) as a superior trigger coordinating expression of iron-regulated genes under iron starvation and oxidative stress. Measuring 77 K chlorophyll a fluorescence, it is shown that hydrogen peroxide treatment causes a transient short-term modification of PS II and PS I most likely leading to increased cyclic electron transport around PS I. In this context, the intriguing observation was made that idiB is transcribed as part of an operon together with a gene encoding a potential [2Fe-2S]-protein. This protein has similarity to [Fe-S]-proteins involved in the electron transport activity of the NDH I complex in eubacteria. Since the NDH I complex is involved in cyclic electron transport activity around PS I in cyanobacteria and both adaptation to iron starvation and adaptation to oxidative stress lead to an enhanced cyclic electron transport activity around PS I, this potential [Fe-S]-protein might participate in the overall adaptational response to iron starvation and/or oxidative stress in Synechococcus.

          Related collections

          Author and article information

          Comments

          Comment on this article