+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      β-Carboline Compounds, Including Harmine, Inhibit DYRK1A and Tau Phosphorylation at Multiple Alzheimer's Disease-Related Sites


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Harmine, a β-carboline alkaloid, is a high affinity inhibitor of the dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) protein. The DYRK1A gene is located within the Down Syndrome Critical Region (DSCR) on chromosome 21. We and others have implicated DYRK1A in the phosphorylation of tau protein on multiple sites associated with tau pathology in Down Syndrome and in Alzheimer's disease (AD). Pharmacological inhibition of this kinase may provide an opportunity to intervene therapeutically to alter the onset or progression of tau pathology in AD. Here we test the ability of harmine, and numerous additional β-carboline compounds, to inhibit the DYRK1A dependent phosphorylation of tau protein on serine 396, serine 262/serine 356 (12E8 epitope), and threonine 231 in cell culture assays and in vitro phosphorylation assays. Results demonstrate that the β-carboline compounds (1) potently reduce the expression of all three phosphorylated forms of tau protein, and (2) inhibit the DYRK1A catalyzed direct phosphorylation of tau protein on serine 396. By assaying several β-carboline compounds, we define certain chemical groups that modulate the affinity of this class of compounds for inhibition of tau phosphorylation.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease.

          Microtubule associated protein tau is abnormally phosphorylated in Alzheimer's disease (AD) and aggregates as paired helical filaments (PHFs) in neurofibrillary tangles (NFTs). We show here that the pattern of tau phosphorylation correlates with the loss of neuronal integrity. Studies using 11 phosphorylation dependent tau antibodies and a panel of AD cases of varying severity were evaluated in terms of three stages of neurofibrillary tangle development: (1) pre-neurofibrillary tangle, (2) intra-, and (3) extra-neuronal neurofibrillary tangles. The pretangle state, in which neurons display nonfibrillar, punctate regions in the cytoplasm, sound dendrites, somas, and nuclei, was observed especially with phospho-tau antibodies TG3 (pT231), pS262, and pT153. Intraneuronal neurofibrillary tangles are homogenously stained with fibrillar tau structures, which were most prominently stained with pT175/181, 12E8 (pS262/pS356), pS422, pS46, pS214 antibodies. Extracellular NFTs, which contain substantial filamentous tau, are most prominently stained with AT8 (pS199/pS202/pT205), AT100 (pT212/pS214), and PHF-1 (pS396/pS404) antibodies, which also stain intracellular NFT. The sequence of early tau phosphorylation suggests that there are events prior to filament formation that are specific to particular phosphorylated tau epitopes, leading to conformational changes and cytopathological alterations.
            • Record: found
            • Abstract: found
            • Article: not found

            DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease.

            Most individuals with Down syndrome show early onset of Alzheimer disease (AD), resulting from the extra copy of chromosome 21. Located on this chromosome is a gene that encodes the dual specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). One of the pathological hallmarks in AD is the presence of neurofibrillary tangles (NFTs), which are insoluble deposits that consist of abnormally hyperphosphorylated Tau. Previously it was reported that Tau at the Thr-212 residue was phosphorylated by Dyrk1A in vitro. To determine the physiological significance of this phosphorylation, an analysis was made of the amount of phospho-Thr-212-Tau (pT212) in the brains of transgenic mice that overexpress the human DYRK1A protein (DYRK1A TG mice) that we recently generated. A significant increase in the amount of pT212 was found in the brains of DYRK1A transgenic mice when compared with age-matched littermate controls. We further examined whether Dyrk1A phosphorylates other Tau residues that are implicated in NFTs. We found that Dyrk1A also phosphorylates Tau at Ser-202 and Ser-404 in vitro. Phosphorylation by Dyrk1A strongly inhibited the ability of Tau to promote microtubule assembly. Following this, using mammalian cells and DYRK1A TG mouse brains, it was demonstrated that the amounts of phospho-Ser-202-Tau and phospho-Ser-404-Tau are enhanced when DYRK1A amounts are high. These results provide the first in vivo evidence for a physiological role of DYRK1A in the hyperphosphorylation of Tau and suggest that the extra copy of the DYRK1A gene contributes to the early onset of AD.
              • Record: found
              • Abstract: found
              • Article: not found

              The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease.

              We scanned throughout chromosome 21 to assess genetic associations with late-onset Alzheimer disease (AD) using 374 Japanese patients and 375 population-based controls, because trisomy 21 is known to be associated with early deposition of beta-amyloid (Abeta) in the brain. Among 417 markers spanning 33 Mb, 22 markers showed associations with either the allele or the genotype frequency (P < 0.05). Logistic regression analysis with age, sex and apolipoprotein E (APOE)-epsilon4 dose supported genetic risk of 17 markers, of which eight markers were linked to the SAMSN1, PRSS7, NCAM2, RUNX1, DYRK1A and KCNJ6 genes. In logistic regression, the DYRK1A (dual-specificity tyrosine-regulated kinase 1A) gene, located in the Down syndrome critical region, showed the highest significance [OR = 2.99 (95% CI: 1.72-5.19), P = 0.001], whereas the RUNX1 gene showed a high odds ratio [OR = 23.3 (95% CI: 2.76-196.5), P = 0.038]. DYRK1A mRNA level in the hippocampus was significantly elevated in patients with AD when compared with pathological controls (P < 0.01). DYRK1A mRNA level was upregulated along with an increase in the Abeta-level in the brain of transgenic mice, overproducing Abeta at 9 months of age. In neuroblastoma cells, Abeta induced an increase in the DYRK1A transcript, which also led to tau phosphorylation at Thr212 under the overexpression of tau. Therefore, the upregulation of DYRK1A transcription results from Abeta loading, further leading to tau phosphorylation. Our result indicates that DYRK1A could be a key molecule bridging between beta-amyloid production and tau phosphorylation in AD.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                6 May 2011
                : 6
                : 5
                [1 ]Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
                [2 ]Translational Drug Development, Translational Genomics Research Institute, Scottsdale, Arizona, United States of America
                [3 ]MediProPharma, Inc., Salt Lake City, Utah, United States of America
                [4 ]Arizona Alzheimer's Research Consortium, Phoenix, Arizona, United States of America
                Alexander Flemming Biomedical Sciences Research Center, Greece
                Author notes

                Conceived and designed the experiments: TD. Performed the experiments: DF BM TW. Analyzed the data: DF BM TD. Contributed reagents/materials/analysis tools: MG IS SG TW. Wrote the paper: TD DF BM.

                Frost et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 9
                Research Article
                Cytoskeletal Proteins
                Drug Discovery
                Molecular Neuroscience
                Signaling Pathways
                Alzheimer Disease



                Comment on this article