110
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Roles of Alpha-Band Phase Synchronization in Local and Large-Scale Cortical Networks

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alpha-frequency band (8–14 Hz) oscillations are among the most salient phenomena in human electroencephalography (EEG) recordings and yet their functional roles have remained unclear. Much of research on alpha oscillations in human EEG has focused on peri-stimulus amplitude dynamics, which phenomenologically support an idea of alpha oscillations being negatively correlated with local cortical excitability and having a role in the suppression of task-irrelevant neuronal processing. This kind of an inhibitory role for alpha oscillations is also supported by several functional magnetic resonance imaging and trans-cranial magnetic stimulation studies. Nevertheless, investigations of local and inter-areal alpha phase dynamics suggest that the alpha-frequency band rhythmicity may play a role also in active task-relevant neuronal processing. These data imply that inter-areal alpha phase synchronization could support attentional, executive, and contextual functions. In this review, we outline evidence supporting different views on the roles of alpha oscillations in cortical networks and unresolved issues that should be addressed to resolve or reconcile these apparently contrasting hypotheses.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Small-world brain networks.

          Many complex networks have a small-world topology characterized by dense local clustering or cliquishness of connections between neighboring nodes yet a short path length between any (distant) pair of nodes due to the existence of relatively few long-range connections. This is an attractive model for the organization of brain anatomical and functional networks because a small-world topology can support both segregated/specialized and distributed/integrated information processing. Moreover, small-world networks are economical, tending to minimize wiring costs while supporting high dynamical complexity. The authors introduce some of the key mathematical concepts in graph theory required for small-world analysis and review how these methods have been applied to quantification of cortical connectivity matrices derived from anatomical tract-tracing studies in the macaque monkey and the cat. The evolution of small-world networks is discussed in terms of a selection pressure to deliver cost-effective information-processing systems. The authors illustrate how these techniques and concepts are increasingly being applied to the analysis of human brain functional networks derived from electroencephalography/magnetoencephalography and fMRI experiments. Finally, the authors consider the relevance of small-world models for understanding the emergence of complex behaviors and the resilience of brain systems to pathological attack by disease or aberrant development. They conclude that small-world models provide a powerful and versatile approach to understanding the structure and function of human brain systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A dual-networks architecture of top-down control.

            Complex systems ensure resilience through multiple controllers acting at rapid and slower timescales. The need for efficient information flow through complex systems encourages small-world network structures. On the basis of these principles, a group of regions associated with top-down control was examined. Functional magnetic resonance imaging showed that each region had a specific combination of control signals; resting-state functional connectivity grouped the regions into distinct 'fronto-parietal' and 'cingulo-opercular' components. The fronto-parietal component seems to initiate and adjust control; the cingulo-opercular component provides stable 'set-maintenance' over entire task epochs. Graph analysis showed dense local connections within components and weaker 'long-range' connections between components, suggesting a small-world architecture. The control systems of the brain seem to embody the principles of complex systems, encouraging resilient performance.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Neuronal synchrony: a versatile code for the definition of relations?

              W. Singer (1999)
                Bookmark

                Author and article information

                Journal
                Front Psychol
                Front. Psychology
                Frontiers in Psychology
                Frontiers Research Foundation
                1664-1078
                16 April 2011
                05 September 2011
                2011
                : 2
                : 204
                Affiliations
                [1] 1simpleNeuroscience Center, University of Helsinki Helsinki, Finland
                Author notes

                Edited by: Ole Jensen, Radboud University, Netherlands

                Reviewed by: Rufin VanRullen, Centre de Recherche Cerveau et Cognition, Toulouse, France; Kyle Elliott Mathewson, Beckman Institute, University of Illinois, USA

                *Correspondence: Satu Palva, Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland. e-mail: satu.palva@ 123456helsinki.fi

                This article was submitted to Frontiers in Perception Science, a specialty of Frontiers in Psychology.

                Article
                10.3389/fpsyg.2011.00204
                3166799
                21922012
                9ae4937b-d13c-4aac-8adb-29308885e98e
                Copyright © 2011 Palva and Palva.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 16 March 2011
                : 11 August 2011
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 127, Pages: 15, Words: 12104
                Categories
                Psychology
                Review Article

                Clinical Psychology & Psychiatry
                electroencephalography,source modeling,synchrony,amplitude,phase,magnetoencephalography,alpha

                Comments

                Comment on this article