8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mechanisms of cross-talk between the diet, the intestinal microbiome, and the undernourished host

      , ,
      Gut Microbes
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d2455335e173">Undernutrition remains one of the most pressing global health challenges today, contributing to nearly half of all deaths in children under five years of age. Although insufficient dietary intake and environmental enteric dysfunction are often inciting factors, evidence now suggests that unhealthy gut microbial populations perpetuate the vicious cycle of pathophysiology that results in persistent growth impairment in children. The metagenomics era has facilitated new research identifying an altered microbiome in undernourished hosts and has provided insight into a number of mechanisms by which these alterations may affect growth. This article summarizes a range of observational studies that highlight differences in the composition and function of gut microbiota between undernourished and healthy children; discusses dietary, environmental and host factors that shape this altered microbiome; examines the consequences of these changes on host physiology; and considers opportunities for microbiome-targeting therapies to combat the global challenge of child undernutrition. </p>

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: found

          Maternal and child undernutrition and overweight in low-income and middle-income countries

          The Lancet, 382(9890), 427-451
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbiota-mediated colonization resistance against intestinal pathogens.

            Commensal bacteria inhabit mucosal and epidermal surfaces in mice and humans, and have effects on metabolic and immune pathways in their hosts. Recent studies indicate that the commensal microbiota can be manipulated to prevent and even to cure infections that are caused by pathogenic bacteria, particularly pathogens that are broadly resistant to antibiotics, such as vancomycin-resistant Enterococcus faecium, Gram-negative Enterobacteriaceae and Clostridium difficile. In this Review, we discuss how immune- mediated colonization resistance against antibiotic-resistant intestinal pathogens is influenced by the composition of the commensal microbiota. We also review recent advances characterizing the ability of different commensal bacterial families, genera and species to restore colonization resistance to intestinal pathogens in antibiotic-treated hosts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How glycan metabolism shapes the human gut microbiota.

              Symbiotic microorganisms that reside in the human intestine are adept at foraging glycans and polysaccharides, including those in dietary plants (starch, hemicellulose and pectin), animal-derived cartilage and tissue (glycosaminoglycans and N-linked glycans), and host mucus (O-linked glycans). Fluctuations in the abundance of dietary and endogenous glycans, combined with the immense chemical variation among these molecules, create a dynamic and heterogeneous environment in which gut microorganisms proliferate. In this Review, we describe how glycans shape the composition of the gut microbiota over various periods of time, the mechanisms by which individual microorganisms degrade these glycans, and potential opportunities to intentionally influence this ecosystem for better health and nutrition.
                Bookmark

                Author and article information

                Journal
                Gut Microbes
                Gut Microbes
                Informa UK Limited
                1949-0976
                1949-0984
                February 28 2017
                December 05 2016
                : 8
                : 2
                : 98-112
                Article
                10.1080/19490976.2016.1267888
                5390823
                27918230
                9ae4ec90-0e07-425d-9844-4ba2a2feb3ec
                © 2017
                History

                Comments

                Comment on this article