198
views
0
recommends
+1 Recommend
1 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: found

          The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.

          Cells from some tumors use an altered metabolic pattern compared with that of normal differentiated adult cells in the body. Tumor cells take up much more glucose and mainly process it through aerobic glycolysis, producing large quantities of secreted lactate with a lower use of oxidative phosphorylation that would generate more adenosine triphosphate (ATP), water, and carbon dioxide. This is the Warburg effect, which provides substrates for cell growth and division and free energy (ATP) from enhanced glucose use. This metabolic switch places the emphasis on producing intermediates for cell growth and division, and it is regulated by both oncogenes and tumor suppressor genes in a number of key cancer-producing pathways. Blocking these metabolic pathways or restoring these altered pathways could lead to a new approach in cancer treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis.

            Most tumors exhibit increased glucose metabolism to lactate, however, the extent to which glucose-derived metabolic fluxes are used for alternative processes is poorly understood. Using a metabolomics approach with isotope labeling, we found that in some cancer cells a relatively large amount of glycolytic carbon is diverted into serine and glycine metabolism through phosphoglycerate dehydrogenase (PHGDH). An analysis of human cancers showed that PHGDH is recurrently amplified in a genomic region of focal copy number gain most commonly found in melanoma. Decreasing PHGDH expression impaired proliferation in amplified cell lines. Increased expression was also associated with breast cancer subtypes, and ectopic expression of PHGDH in mammary epithelial cells disrupted acinar morphogenesis and induced other phenotypic alterations that may predispose cells to transformation. Our findings show that the diversion of glycolytic flux into a specific alternate pathway can be selected during tumor development and may contribute to the pathogenesis of human cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetics and biology of pancreatic ductal adenocarcinoma.

              Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the United States with a median survival of <6 mo and a dismal 5-yr survival rate of 3%-5%. The cancer's lethal nature stems from its propensity to rapidly disseminate to the lymphatic system and distant organs. This aggressive biology and resistance to conventional and targeted therapeutic agents leads to a typical clinical presentation of incurable disease at the time of diagnosis. The well-defined serial histopathologic picture and accompanying molecular profiles of PDAC and its precursor lesions have provided the framework for emerging basic and translational research. Recent advances include insights into the cancer's cellular origins, high-resolution genomic profiles pointing to potential new therapeutic targets, and refined mouse models reflecting both the genetics and histopathologic evolution of human PDAC. This confluence of developments offers the opportunity for accelerated discovery and the future promise of improved treatment.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                April 2012
                April 2012
                : 149
                : 3
                : 656-670
                Article
                10.1016/j.cell.2012.01.058
                3472002
                22541435
                © 2012

                Comments

                Comment on this article