32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Bee and Wasp Diversity in a Heterogeneous Tropical Farming System Compared to Protected Forest

      research-article
      1 , 2 , * , 1 , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Diversity in tropical rain forests and coral reefs.

          The commonly observed high diversity of trees in tropical rain forests and corals on tropical reefs is a nonequilibrium state which, if not disturbed further, will progress toward a low-diversity equilibrium community. This may not happen if gradual changes in climate favor different species. If equilibrium is reached, a lesser degree of diversity may be sustained by niche diversification or by a compensatory mortality that favors inferior competitors. However, tropical forests and reefs are subject to severe disturbances often enough that equilibrium may never be attained.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist.

            A recent increase in studies of β diversity has yielded a confusing array of concepts, measures and methods. Here, we provide a roadmap of the most widely used and ecologically relevant approaches for analysis through a series of mission statements. We distinguish two types of β diversity: directional turnover along a gradient vs. non-directional variation. Different measures emphasize different properties of ecological data. Such properties include the degree of emphasis on presence/absence vs. relative abundance information and the inclusion vs. exclusion of joint absences. Judicious use of multiple measures in concert can uncover the underlying nature of patterns in β diversity for a given dataset. A case study of Indonesian coral assemblages shows the utility of a multi-faceted approach. We advocate careful consideration of relevant questions, matched by appropriate analyses. The rigorous application of null models will also help to reveal potential processes driving observed patterns in β diversity. © 2010 Blackwell Publishing Ltd/CNRS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crop pollination from native bees at risk from agricultural intensification.

              Ecosystem services are critical to human survival; in selected cases, maintaining these services provides a powerful argument for conserving biodiversity. Yet, the ecological and economic underpinnings of most services are poorly understood, impeding their conservation and management. For centuries, farmers have imported colonies of European honey bees (Apis mellifera) to fields and orchards for pollination services. These colonies are becoming increasingly scarce, however, because of diseases, pesticides, and other impacts. Native bee communities also provide pollination services, but the amount they provide and how this varies with land management practices are unknown. Here, we document the individual species and aggregate community contributions of native bees to crop pollination, on farms that varied both in their proximity to natural habitat and management type (organic versus conventional). On organic farms near natural habitat, we found that native bee communities could provide full pollination services even for a crop with heavy pollination requirements (e.g., watermelon, Citrullus lanatus), without the intervention of managed honey bees. All other farms, however, experienced greatly reduced diversity and abundance of native bees, resulting in insufficient pollination services from native bees alone. We found that diversity was essential for sustaining the service, because of year-to-year variation in community composition. Continued degradation of the agro-natural landscape will destroy this "free" service, but conservation and restoration of bee habitat are potentially viable economic alternatives for reducing dependence on managed honey bees.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                26 December 2012
                : 7
                : 12
                : e52109
                Affiliations
                [1 ]Institute of Ecology and Evolution, Community Ecology, University of Bern, Bern, Switzerland
                [2 ]University of Koblenz-Landau, Ecosystem Analysis, Landau, Germany
                University of Tartu, Estonia
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CS MHE. Performed the experiments: CS SR. Analyzed the data: CS. Contributed reagents/materials/analysis tools: CS. Wrote the paper: CS.

                Article
                PONE-D-12-25566
                10.1371/journal.pone.0052109
                3530594
                23300598
                9af17be5-a82c-4ba5-ad24-d3bcad756f42
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 August 2012
                : 8 November 2012
                Page count
                Pages: 8
                Funding
                This research project was funded by the International Tropical Conservation Foundation ITCF, Kerzers, Switzerland ( www.shipstern.org) and the Natural History Museum of Bern, Switzerland (Naturhistorisches Museum der Burgergemeinde Bern, www.nmbe.ch). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript, except for the requirement of ITCF that at least a part of the research project takes place at Shipstern Nature Reserve.
                Categories
                Research Article
                Agriculture
                Agroecology
                Ecosystems Agroecology
                Forestry
                Sustainable Agriculture
                Biology
                Ecology
                Agroecology
                Agro-Population Ecology
                Ecosystems Agroecology
                Community Ecology
                Community Assembly
                Community Structure
                Biodiversity
                Conservation Science
                Environmental Protection
                Global Change Ecology
                Spatial and Landscape Ecology
                Terrestrial Ecology
                Zoology
                Entomology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article