3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oligoproline-derived nanocarrier for dual stimuli-responsive gene delivery†

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene therapy is a promising method for the treatment of vascular disease; however, successful strategies depend on the development of safe and effective delivery technologies with specific targeting to a diseased point of vasculature. Reactive oxygen species (ROS) are overproduced by vascular smooth muscle cells (VSMCs) at critical stages of atherosclerosis progression. Therefore, ROS were exploited as a stimulus for vascular targeted gene delivery in this study. A combination of bio-conjugation methods and controlled reverse addition-fragmentation chain-trasfer (RAFT) polymerization was utilized to synthesize a new ROS-cleavable, pH-responsive mPEG 113- b-CP 5K- b-PDMAEMA 42- b-P(DMAEMA 22- co-BMA 40- co-PAA 24) (PPDDBP) polymer as a nanocarrier for plasmid DNA (pDNA) delivery. The ros degradability of PPDDBP polymers was confirmed by SIN-1-mediated cleavage of CP 5K peptide linkers through a shift in GPC chromatogram with an appearance of mPEG shoulder peak and an increase in zeta potential (ζ). The polyplex nanocarrier also demonstrated effective PDNA loading, serum stability, and hemocompatibility, indicating its excellent performance under physiological conditions. The polyplexes demonstrated ideal pH responsiveness for endosomal escape and effective ROS responsiveness for improved targeting in an in vitro model of pathogenic VSMCs in terms of both uptake and expression of reporter gene. These data suggest this novel nanocarrier polyplex system is a promising gene delivery tool for preventing or treating areas of high ROS, such as atherosclerotic lesions.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Progress and problems with the use of viral vectors for gene therapy.

          Gene therapy has a history of controversy. Encouraging results are starting to emerge from the clinic, but questions are still being asked about the safety of this new molecular medicine. With the development of a leukaemia-like syndrome in two of the small number of patients that have been cured of a disease by gene therapy, it is timely to contemplate how far this technology has come, and how far it still has to go.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics.

            Considered by some to be among the simpler forms of life, viruses represent highly evolved natural vectors for the transfer of foreign genetic information into cells. This attribute has led to extensive attempts to engineer recombinant viral vectors for the delivery of therapeutic genes into diseased tissues. While substantial progress has been made, and some clinical successes are over the horizon, further vector refinement and/or development is required before gene therapy will become standard care for any individual disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide.

              Oxidative stress is caused predominantly by accumulation of hydrogen peroxide and distinguishes inflamed tissue from healthy tissue. Hydrogen peroxide could potentially be useful as a stimulus for targeted drug delivery to diseased tissue. However, current polymeric systems are not sensitive to biologically relevant concentrations of H(2)O(2) (50-100 μM). Here we report a new biocompatible polymeric capsule capable of undergoing backbone degradation and thus release upon exposure to such concentrations of hydrogen peroxide. Two polymeric structures were developed differing with respect to the linkage between the boronic ester group and the polymeric backbone: either direct (1) or via an ether linkage (2). Both polymers are stable in aqueous solution at normal pH, and exposure to peroxide induces the removal of the boronic ester protecting groups at physiological pH and temperature, revealing phenols along the backbone, which undergo quinone methide rearrangement to lead to polymer degradation. Considerably faster backbone degradation was observed for polymer 2 over polymer 1 by NMR and GPC. Nanoparticles were formulated from these novel materials to analyze their oxidation triggered release properties. While nanoparticles formulated from polymer 1 only released 50% of the reporter dye after exposure to 1 mM H(2)O(2) for 26 h, nanoparticles formulated from polymer 2 did so within 10 h and were able to release their cargo selectively in biologically relevant concentrations of H(2)O(2). Nanoparticles formulated from polymer 2 showed a 2-fold enhancement of release upon incubation with activated neutrophils, while controls showed a nonspecific response to ROS producing cells. These polymers represent a novel, biologically relevant, and biocompatible approach to biodegradable H(2)O(2)-triggered release systems that can degrade into small molecules, release their cargo, and should be easily cleared by the body.
                Bookmark

                Author and article information

                Journal
                101598493
                40936
                J Mater Chem B
                J Mater Chem B
                Journal of materials chemistry. B
                2050-750X
                2050-7518
                4 May 2022
                28 September 2015
                20 August 2015
                10 May 2022
                : 3
                : 36
                : 7271-7280
                Affiliations
                [a ]Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
                [b ]Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
                [c ]Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN 37235, USA.
                Author notes
                Article
                NIHMS1800525
                10.1039/c5tb00988j
                9088177
                32262835
                9af24dc7-d860-4f2e-96a3-a0f6fce0c6b4

                This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

                History
                Categories
                Article

                Comments

                Comment on this article