Blog
About

120
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock.

          Methods

          The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575–590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit? (2) Should we monitor preload and fluid responsiveness in shock? (3) How and when should we monitor stroke volume or cardiac output in shock? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock? Four types of statements were used: definition, recommendation, best practice and statement of fact.

          Results

          Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring.

          Conclusions

          This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock.

          Related collections

          Most cited references 188

          • Record: found
          • Abstract: found
          • Article: not found

          Early goal-directed therapy in the treatment of severe sepsis and septic shock.

          Goal-directed therapy has been used for severe sepsis and septic shock in the intensive care unit. This approach involves adjustments of cardiac preload, afterload, and contractility to balance oxygen delivery with oxygen demand. The purpose of this study was to evaluate the efficacy of early goal-directed therapy before admission to the intensive care unit. We randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit. Clinicians who subsequently assumed the care of the patients were blinded to the treatment assignment. In-hospital mortality (the primary efficacy outcome), end points with respect to resuscitation, and Acute Physiology and Chronic Health Evaluation (APACHE II) scores were obtained serially for 72 hours and compared between the study groups. Of the 263 enrolled patients, 130 were randomly assigned to early goal-directed therapy and 133 to standard therapy; there were no significant differences between the groups with respect to base-line characteristics. In-hospital mortality was 30.5 percent in the group assigned to early goal-directed therapy, as compared with 46.5 percent in the group assigned to standard therapy (P = 0.009). During the interval from 7 to 72 hours, the patients assigned to early goal-directed therapy had a significantly higher mean (+/-SD) central venous oxygen saturation (70.4+/-10.7 percent vs. 65.3+/-11.4 percent), a lower lactate concentration (3.0+/-4.4 vs. 3.9+/-4.4 mmol per liter), a lower base deficit (2.0+/-6.6 vs. 5.1+/-6.7 mmol per liter), and a higher pH (7.40+/-0.12 vs. 7.36+/-0.12) than the patients assigned to standard therapy (P < or = 0.02 for all comparisons). During the same period, mean APACHE II scores were significantly lower, indicating less severe organ dysfunction, in the patients assigned to early goal-directed therapy than in those assigned to standard therapy (13.0+/-6.3 vs. 15.9+/-6.4, P < 0.001). Early goal-directed therapy provides significant benefits with respect to outcome in patients with severe sepsis and septic shock.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Grading quality of evidence and strength of recommendations.

            Users of clinical practice guidelines and other recommendations need to know how much confidence they can place in the recommendations. Systematic and explicit methods of making judgments can reduce errors and improve communication. We have developed a system for grading the quality of evidence and the strength of recommendations that can be applied across a wide range of interventions and contexts. In this article we present a summary of our approach from the perspective of a guideline user. Judgments about the strength of a recommendation require consideration of the balance between benefits and harms, the quality of the evidence, translation of the evidence into specific circumstances, and the certainty of the baseline risk. It is also important to consider costs (resource utilisation) before making a recommendation. Inconsistencies among systems for grading the quality of evidence and the strength of recommendations reduce their potential to facilitate critical appraisal and improve communication of these judgments. Our system for guiding these complex judgments balances the need for simplicity with the need for full and transparent consideration of all important issues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012.

              To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.
                Bookmark

                Author and article information

                Affiliations
                [ ]Anaesthesia and Intensive Care, St George’s Hospital and Medical School, SW17 0QT London, UK
                [ ]Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
                [ ]Department of Intensive Care Medicine and Anesthesiology, Catholic University–A. Gemelli University Hospital, Rome, Italy
                [ ]Department of Critical Care, King’s College London, Guy’s and St Thomas’ Foundation Trust, Westminster Bridge Road, London, SE1 7EH UK
                [ ]Department of Intensive Care Adults, Erasmus University Medical Center, Rotterdam, The Netherlands
                [ ]Department of Transversal Medicine, Institute of Anesthesiology and Intensive Care Medicine, Triemli City Hospital, Zurich, Switzerland
                [ ]McMaster University, Hamilton, ON Canada
                [ ]Department of Anesthesiology and Critical Care Medicine, U942 INSERM, Université Paris Diderot, PRES Sorbonne Paris Cité and APHP, Saint Louis Lariboisière University Hospitals, Paris, France
                [ ]Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261 USA
                [ ]Hôpital de Bicêtre, Service de Réanimation Médicale, AP-HP, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
                Contributors
                +44-208-7250879 , mcecconi@sgul.ac.uk , m.cecconi@nhs.net
                Journal
                Intensive Care Med
                Intensive Care Med
                Intensive Care Medicine
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0342-4642
                1432-1238
                13 November 2014
                13 November 2014
                2014
                : 40
                : 12
                : 1795-1815
                25392034 4239778 3525 10.1007/s00134-014-3525-z
                © The Author(s) 2014

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                Categories
                Conference Reports and Expert Panel
                Custom metadata
                © Springer-Verlag Berlin Heidelberg and ESICM 2014

                Comments

                Comment on this article