8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Modifications of dietary flavonoids towards improved bioactivity: An update on structure–activity relationship

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the past two decades, extensive studies have revealed that inflammation represents a major risk factor for various human diseases. Chronic inflammatory responses predispose to pathological progression of chronic illnesses featured with penetration of inflammatory cells, dysregulation of cellular signaling, excessive generation of cytokines, and loss of barrier function. Hence, the suppression of inflammation has the potential to delay, prevent, and to treat chronic diseases. Flavonoids, which are widely distributed in humans daily diet, such as vegetables, fruits, tea and cocoa, among others, are considered as bioactive compounds with anti-inflammatory potential. Modification of flavonoids including hydroxylation, o-methylation, and glycosylation, can alter their metabolic features and affect mechanisms of inflammation. Structure-activity relationships among naturally occurred flavonoids hence provide us with a preliminary insight into their anti-inflammatory potential, not only attributing to the antioxidant capacity, but also to modulate inflammatory mediators. The present review summarizes current knowledge and underlies mechanisms of anti-inflammatory activities of dietary flavonoids and their influences involved in the development of various inflammatory-related chronic diseases. In addition, the established structure-activity relationships of phenolic compounds in this review may give an insight for the screening of new anti-inflammatory agents from dietary materials.

          Related collections

          Most cited references 123

          • Record: found
          • Abstract: found
          • Article: not found

          Phenolics as potential antioxidant therapeutic agents: mechanism and actions.

          Accumulating chemical, biochemical, clinical and epidemiological evidence supports the chemoprotective effects of phenolic antioxidants against oxidative stress-mediated disorders. The pharmacological actions of phenolic antioxidants stem mainly from their free radical scavenging and metal chelating properties as well as their effects on cell signaling pathways and on gene expression. The antioxidant capacities of phenolic compounds that are widely distributed in plant-based diets were assessed by the Trolox equivalent antioxidant capacity (TEAC), the ferric reducing antioxidant power (FRAP), the hypochlorite scavenging capacity, the deoxyribose method and the copper-phenanthroline-dependent DNA oxidation assays. Based on the TEAC, FRAP and hypochlorite scavenging data, the observed activity order was: procyanidin dimer>flavanol>flavonol>hydroxycinnamic acids>simple phenolic acids. Among the flavonol aglycones, the antioxidant propensities decrease in the order quercetin, myricetin and kaempferol. Gallic acid and rosmarinic acid were the most potent antioxidants among the simple phenolic and hydroxycinnamic acids, respectively. Ferulic acid displayed the highest inhibitory activity against deoxyribose degradation but no structure-activity relationship could be established for the activities of the phenolic compounds in the deoxyribose assay. The efficacies of the phenolic compounds differ depending on the mechanism of antioxidant action in the respective assay used, with procyanidin dimers and flavan-3-ols showing very potent activities in most of the systems tested. Compared to the physiologically active (glutathione, alpha-tocopherol, ergothioneine) and synthetic (Trolox, BHA, BHT) antioxidants, these compounds exhibited much higher efficacy. Plant-derived phenolics represents good sources of natural antioxidants, however, further investigation on the molecular mechanism of action of these phytochemicals is crucial to the evaluation of their potential as prophylactic agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity.

            Significantly, much of the activity of Citrus flavonoids appears to impact blood and microvascular endothelial cells, and it is not surprising that the two main areas of research on the biological actions of Citrus flavonoids have been inflammation and cancer. Epidemiological and animal studies point to a possible protective effect of flavonoids against cardiovascular diseases and some types of cancer. Although flavonoids have been studied for about 50 years, the cellular mechanisms involved in their biological action are still not completely known. Many of the pharmacological properties of Citrus flavonoids can be linked to the abilities of these compounds to inhibit enzymes involved in cell activation. Attempts to control cancer involve a variety of means, including the use of suppressing, blocking, and transforming agents. Suppressing agents prevent the formation of new cancers from procarcinogens, and blocking agents prevent carcinogenic compounds from reaching critical initiation sites, while transformation agents act to facilitate the metabolism of carcinogenic components into less toxic materials or prevent their biological actions. Flavonoids can act as all three types of agent. Many epidemiological studies have shown that regular flavonoid intake is associated with a reduced risk of cardiovascular diseases. In coronary heart disease, the protective effects of flavonoids include mainly antithrombotic, anti-ischemic, anti-oxidant, and vasorelaxant. It is suggested that flavonoids decrease the risk of coronary heart disease by three major actions: improving coronary vasodilatation, decreasing the ability of platelets in the blood to clot, and preventing low-density lipoproteins (LDLs) from oxidizing. The anti-inflammatory properties of the Citrus flavonoids have also been studied. Several key studies have shown that the anti-inflammatory properties of Citrus flavonoids are due to its inhibition of the synthesis and biological activities of different pro-inflammatory mediators, mainly the arachidonic acid derivatives, prostaglandins E 2, F 2, and thromboxane A 2. The anti-oxidant and anti-inflammatory properties of Citrus flavonoids can play a key role in their activity against several degenerative diseases and particularly brain diseases. The most abundant Citrus flavonoids are flavanones, such as hesperidin, naringin, or neohesperidin. However, generally, the flavones, such as diosmin, apigenin, or luteolin, exhibit higher biological activity, even though they occur in much lower concentrations. Diosmin and rutin have a demonstrated activity as a venotonic agent and are present in several pharmaceutical products. Apigenin and their glucosides have been shown a good anti-inflammatory activity without the side effects of other anti-inflammatory products. In this paper, we discuss the relation between each structural factor of Citrus flavonoids and the anticancer, anti-inflammatory, and cardiovascular protection activity of Citrus flavonoids and their role in degenerative diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease.

              Chronic inflammation is being shown to be increasingly involved in the onset and development of several pathological disturbances such as arteriosclerosis, obesity, diabetes, neurodegenerative diseases and even cancer. Treatment for chronic inflammatory disorders has not been solved, and there is an urgent need to find new and safe anti-inflammatory compounds. Flavonoids belong to a group of natural substances occurring normally in the diet that exhibit a variety of beneficial effects on health. The anti-inflammatory properties of flavonoids have been studied recently, in order to establish and characterize their potential utility as therapeutic agents in the treatment of inflammatory diseases. Several mechanisms of action have been proposed to explain in vivo flavonoid anti-inflammatory actions, such as antioxidant activity, inhibition of eicosanoid generating enzymes or the modulation of the production of proinflammatory molecules. Recent studies have also shown that some flavonoids are modulators of proinflammatory gene expression, thus leading to the attenuation of the inflammatory response. However, much work remains to be done in order to achieve definitive conclusions about their potential usefulness. This review summarizes the known mechanisms involved in the anti-inflammatory activity of flavonoids and the implications of these effects on the protection against cancer and cardiovascular disease.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Food Science and Nutrition
                Critical Reviews in Food Science and Nutrition
                Informa UK Limited
                1040-8398
                1549-7852
                June 28 2017
                March 04 2018
                July 14 2017
                March 04 2018
                : 58
                : 4
                : 513-527
                Affiliations
                [1 ] College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
                [2 ] Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
                [3 ] Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
                [4 ] Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Lublin, Poland
                [5 ] Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
                [6 ] Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
                Article
                10.1080/10408398.2016.1196334
                27438892
                © 2018

                Comments

                Comment on this article