35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Monitoring mitochondrial inner membrane potential for detecting early changes in viability of bacterium-infected human bone marrow-derived mesenchymal stem cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          One of the most challenging safety issues in the manufacture of cell based medicinal products is the control of microbial risk as cell-based products cannot undergo terminal sterilization. Accordingly, sensitive and reliable methods for detection of microbial contamination are called for. As mitochondrial function has been shown to correlate with the viability and functionality of human mesenchymal stem cells (hMSCs) we have studied the use of a mitochondrial inner membrane potential sensitive dye for detecting changes in the function of mitochondria following infection by bacteria.

          Methods

          The effect of bacterial contamination on the viability of bone marrow-derived mesenchymal stem cells (BMMSCs) was studied. BMMSC lines were infected with three different bacterial species, namely two strains of Pseudomonas aeruginosa, three strains of Staphylococcus aureus, and three strains of Staphylococcus epidermidis. The changes in viability of the BMMSCs after bacterial infection were studied by staining with Trypan blue, by morphological analysis and by monitoring of the mitochondrial inner membrane potential.

          Results

          Microscopy and viability assessment by Trypan blue staining showed that even the lowest bacterial inocula caused total dissipation of BMMSCs within 24 hours of infection, similar to the effects seen with bacterial loads which were several magnitudes higher. The first significant signs of damage induced by the pathogens became evident after 6 hours of infection. Early changes in mitochondrial inner membrane potential of BMMSCs were evident after 4 hours of infection even though no visible changes in viability of the BMMSCs could be seen.

          Conclusions

          Even low levels of bacterial contamination can cause a significant change in the viability of BMMSCs. Moreover, monitoring the depolarization of the mitochondrial inner membrane potential may provide a rapid tool for early detection of cellular damage induced by microbial infection. Accordingly, mitochondrial analyses offer sensitive tools for quality control and monitoring of safety and efficacy of cellular therapy products.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular characterization of mitochondrial apoptosis-inducing factor.

          Mitochondria play a key part in the regulation of apoptosis (cell death). Their intermembrane space contains several proteins that are liberated through the outer membrane in order to participate in the degradation phase of apoptosis. Here we report the identification and cloning of an apoptosis-inducing factor, AIF, which is sufficient to induce apoptosis of isolated nuclei. AIF is a flavoprotein of relative molecular mass 57,000 which shares homology with the bacterial oxidoreductases; it is normally confined to mitochondria but translocates to the nucleus when apoptosis is induced. Recombinant AIF causes chromatin condensation in isolated nuclei and large-scale fragmentation of DNA. It induces purified mitochondria to release the apoptogenic proteins cytochrome c and caspase-9. Microinjection of AIF into the cytoplasm of intact cells induces condensation of chromatin, dissipation of the mitochondrial transmembrane potential, and exposure of phosphatidylserine in the plasma membrane. None of these effects is prevented by the wide-ranging caspase inhibitor known as Z-VAD.fmk. Overexpression of Bcl-2, which controls the opening of mitochondrial permeability transition pores, prevents the release of AIF from the mitochondrion but does not affect its apoptogenic activity. These results indicate that AIF is a mitochondrial effector of apoptotic cell death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells.

            Pluripotent stem cells hold significant promise in regenerative medicine due to their unlimited capacity for self-renewal and potential to differentiate into any cell type of the body. In this study, we demonstrate that proper mitochondrial function is essential for proliferation of undifferentiated ESCs. Attenuating mitochondrial function under self-renewing conditions makes these cells more glycolytic-dependent, and it is associated with an increase in the mRNA reserves of Nanog, Oct4, and Sox2. In contrast, attenuating mitochondrial function during the first 7 days of differentiation results in normal repression of Oct4, Nanog, and Sox2. However, differentiation potential is compromised as revealed by abnormal transcription of multiple Hox genes. Furthermore, under differentiating conditions in which mitochondrial function is attenuated, tumorigenic cells continue to persist. Our results, therefore establish the importance of normal mitochondrial function in ESC proliferation, regulating differentiation, and preventing the emergence of tumorigenic cells during the process of differentiation. Copyright © 2010 AlphaMed Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2,3-dioxygenase.

              Human multipotent mesenchymal stromal cells (MSCs) exhibit multilineage differentiation potential, support hematopoiesis, and inhibit proliferation and effector function of various immune cells. On the basis of these properties, MSC are currently under clinical investigation in a range of therapeutic applications including tissue repair and immune-mediated disorders such as graft-versus-host-disease refractory to pharmacological immunosuppression. Although initial clinical results appear promising, there are significant concerns that application of MSC might inadvertently suppress antimicrobial immunity with an increased risk of infection. We demonstrate here that on stimulation with inflammatory cytokines human MSC exhibit broad-spectrum antimicrobial effector function directed against a range of clinically relevant bacteria, protozoal parasites and viruses. Moreover, we identify the tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) as the underlying molecular mechanism. We furthermore delineate significant differences between human and murine MSC in that murine MSC fail to express IDO and inhibit bacterial growth. Conversely, only murine but not human MSC express inducible nitric oxide synthase on cytokine stimulation thus challenging the validity of murine in vivo models for the preclinical evaluation of human MSC. Collectively, our data identify human MSC as a cellular immunosuppressant that concurrently exhibits potent antimicrobial effector function thus encouraging their further evaluation in clinical trials.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cell Res Ther
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central
                1757-6512
                2012
                11 December 2012
                : 3
                : 6
                : 53
                Affiliations
                [1 ]Institute of Biomedicine, Department of Anatomy and Cell Biology, Aapistie 7, P.O. Box 5000, FIN-90014, University of Oulu, Oulu, Finland
                [2 ]Institute of Clinical Medicine, Division of Surgery, University of Oulu and Clinical Research Centre, Department of Surgery and Intensive Care, Aapistie 5a, P.O. Box 5000, FIN-90014, Oulu University Hospital, Oulu, Finland
                [3 ]Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310, Helsinki, Finland
                [4 ]Aalto School of Chemical Technology, Department of Biotechnology and Chemical Technology, Kemistintie 1A, P.O. Box 6100, 00076, Aalto, Finland
                Article
                scrt144
                10.1186/scrt144
                3580483
                23231835
                9b0a98dd-dcbd-43ec-9fd9-1ef1a61dd509
                Copyright ©2012 Pietilä et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 July 2012
                : 6 November 2012
                : 29 November 2012
                Categories
                Research

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article