Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A benchmark of data stream classification for human activity recognition on connected objects

      Preprint

      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper evaluates data stream classifiers from the perspective of connected devices, focusing on the use case of HAR. We measure both classification performance and resource consumption (runtime, memory, and power) of five usual stream classification algorithms, implemented in a consistent library, and applied to two real human activity datasets and to three synthetic datasets. Regarding classification performance, results show an overall superiority of the HT, the MF, and the NB classifiers over the FNN and the Micro Cluster Nearest Neighbor (MCNN) classifiers on 4 datasets out of 6, including the real ones. In addition, the HT, and to some extent MCNN, are the only classifiers that can recover from a concept drift. Overall, the three leading classifiers still perform substantially lower than an offline classifier on the real datasets. Regarding resource consumption, the HT and the MF are the most memory intensive and have the longest runtime, however, no difference in power consumption is found between classifiers. We conclude that stream learning for HAR on connected objects is challenged by two factors which could lead to interesting future work: a high memory consumption and low F1 scores overall.

          Related collections

          Author and article information

          Journal
          26 August 2020
          Article
          2008.11880

          http://creativecommons.org/licenses/by/4.0/

          Custom metadata
          8 pages, 9 figures, for a journal
          cs.LG stat.ML

          Machine learning, Artificial intelligence

          Comments

          Comment on this article