83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      E-Cadherin Suppresses Cellular Transformation by Inhibiting β-Catenin Signaling in an Adhesion-Independent Manner

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          E-cadherin is a tumor suppressor protein with a well-established role in cell–cell adhesion. Adhesion could contribute to tumor suppression either by physically joining cells or by facilitating other juxtacrine signaling events. Alternatively, E-cadherin tumor suppressor activity could result from binding and antagonizing the nuclear signaling function of β-catenin, a known proto-oncogene. To distinguish between an adhesion- versus a β-catenin signaling–dependent mechanism, chimeric cadherin constructs were expressed in the SW480 colorectal tumor cell line. Expression of wild-type E-cadherin significantly inhibits the growth of this cell line. Growth inhibitory activity is retained by all constructs that have the β-catenin binding region of the cytoplasmic domain but not by E-cadherin constructs that exhibit adhesive activity, but lack the β-catenin binding region. This growth suppression correlates with a reduction in β-catenin/T cell factor (TCF) reporter gene activity. Importantly, direct inhibition of β-catenin/TCF signaling inhibits the growth of SW480 cells, and the growth inhibitory activity of E-cadherin is rescued by constitutively activated forms of TCF. Thus, the growth suppressor activity of E-cadherin is adhesion independent and results from an inhibition of the β-catenin/TCF signaling pathway, suggesting that loss of E-cadherin expression can contribute to upregulation of this pathway in human cancers. E-cadherin–mediated growth suppression was not accompanied by overall depletion of β-catenin from the cytosol and nucleus. This appears to be due to the existence of a large pool of cytosolic β-catenin in SW480 cells that is refractory to both cadherin binding and TCF binding. Thus, a small pool of β-catenin that can bind TCF (i.e., the transcriptionally active pool) can be selectively depleted by E-cadherin expression. The existence of functionally distinct pools of cytosolic β-catenin suggests that there are mechanisms to regulate β-catenin signaling in addition to controlling its level of accumulation.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of c-MYC as a target of the APC pathway.

          The adenomatous polyposis coli gene (APC) is a tumor suppressor gene that is inactivated in most colorectal cancers. Mutations of APC cause aberrant accumulation of beta-catenin, which then binds T cell factor-4 (Tcf-4), causing increased transcriptional activation of unknown genes. Here, the c-MYC oncogene is identified as a target gene in this signaling pathway. Expression of c-MYC was shown to be repressed by wild-type APC and activated by beta-catenin, and these effects were mediated through Tcf-4 binding sites in the c-MYC promoter. These results provide a molecular framework for understanding the previously enigmatic overexpression of c-MYC in colorectal cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of Wnt signaling in development.

            Wnt genes encode a large family of secreted, cysteine-rich proteins that play key roles as intercellular signaling molecules in development. Genetic studies in Drosophila and Caenorhabditis elegans, ectopic gene expression in Xenopus, and gene knockouts in the mouse have demonstrated the involvement of Wnts in processes as diverse as segmentation, CNS patterning, and control of asymmetric cell divisions. The transduction of Wnt signals between cells proceeds in a complex series of events including post-translational modification and secretion of Wnts, binding to transmembrane receptors, activation of cytoplasmic effectors, and, finally, transcriptional regulation of target genes. Over the past two years our understanding of Wnt signaling has been substantially improved by the identification of Frizzled proteins as cell surface receptors for Wnts and by the finding that beta-catenin, a component downstream of the receptor, can translocate to the nucleus and function as a transcriptional activator. Here we review recent data that have started to unravel the mechanisms of Wnt signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF.

              The vertebrate transcription factors TCF (T cell factor) and LEF (lymphocyte enhancer binding factor) interact with beta-catenin and are hypothesized to mediate Wingless/Wnt signaling. We have cloned a maternally expressed Drosophila TCF family member, dTCF. dTCF binds a canonical TCF DNA motif and interacts with the beta-catenin homolog Armadillo. Previous studies have identified two regions in Armadillo required for Wingless signaling. One of these interacts with dTCF, while the other constitutes a transactivation domain. Mutations in dTCF and expression of a dominant-negative dTCF transgene cause a segment polarity phenotype and affect expression of the Wingless target genes engrailed and Ultrabithorax. Epistasis analysis positions dTCF downstream of armadillo. The Armadillo-dTCF complex mediates Wingless signaling as a bipartite transcription factor.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                28 May 2001
                : 153
                : 5
                : 1049-1060
                Affiliations
                [a ]Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
                Article
                0103014
                10.1083/jcb.153.5.1049
                2174337
                11381089
                9b23f194-374e-40ca-98a7-84b3c8a96611
                © 2001 The Rockefeller University Press
                History
                : 6 March 2001
                : 16 April 2001
                : 23 April 2001
                Categories
                Original Article

                Cell biology
                e-cadherin,adhesion,t cell factor,β-catenin,tumor suppressor
                Cell biology
                e-cadherin, adhesion, t cell factor, β-catenin, tumor suppressor

                Comments

                Comment on this article