9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension

      , , , ,
      Journal of The Royal Society Interface
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d1639322e214">The embryonic lineage of intramural cells, microstructural organization of the extracellular matrix, local luminal and wall geometry, and haemodynamic loads vary along the length of the aorta. Yet, it remains unclear why certain diseases manifest differentially along the aorta. Toward this end, myriad animal models provide insight into diverse disease conditions—including fibrosis, aneurysm and dissection—but inherent differences across models impede general interpretations. We examined region-specific cellular, matrix, and biomechanical changes in a single experimental model of hypertension and atherosclerosis, which commonly coexist. Our findings suggest that (i) intramural cells within the ascending aorta are unable to maintain the intrinsic material stiffness of the wall, which ultimately drives aneurysmal dilatation, (ii) a mechanical stress-initiated, inflammation-driven remodelling within the descending aorta results in excessive fibrosis, and (iii) a transient loss of adventitial collagen within the suprarenal aorta contributes to dissection propensity. Smooth muscle contractility helps to control wall stress in the infrarenal aorta, which maintains mechanical properties near homeostatic levels despite elevated blood pressure. This early mechanoadaptation of the infrarenal aorta does not preclude subsequent acceleration of neointimal formation, however. Because region-specific conditions may be interdependent, as, for example, diffuse central arterial stiffening can increase cyclic haemodynamic loads on an aneurysm that is developing proximally, there is a clear need for more systematic assessments of aortic disease progression, not simply a singular focus on a particular region or condition. </p>

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice.

          Increased plasma concentrations of angiotension II (Ang II) have been implicated in atherogenesis. To examine this relationship directly, we infused Ang II or vehicle for 1 month via osmotic minipumps into mature apoE(-/-) mice. These doses of Ang II did not alter arterial blood pressure, body weight, serum cholesterol concentrations, or distribution of lipoprotein cholesterol. However, Ang II infusions promoted an increased severity of aortic atherosclerotic lesions. These Ang II-induced lesions were predominantly lipid-laden macrophages and lymphocytes; moreover, Ang II promoted a marked increase in the number of macrophages present in the adventitial tissue underlying lesions. Unexpectedly, pronounced abdominal aortic aneurysms were present in apoE(-/-) mice infused with Ang II. Sequential sectioning of aneurysmal abdominal aorta revealed two major characteristics: an intact artery that is surrounded by a large remodeled adventitia, and a medial break with pronounced dilation and more modestly remodeled adventitial tissue. Although no atherosclerotic lesions were visible at the medial break point, the presence of hyperlipidemia was required because infusions of Ang II into apoE(+/+) mice failed to generate aneurysms. These results demonstrate that increased plasma concentrations of Ang II have profound and rapid effects on vascular pathology when combined with hyperlipidemia, in the absence of hemodynamic influences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The structural factor of hypertension: large and small artery alterations.

            Pathophysiological studies have extensively investigated the structural factor in hypertension, including large and small artery remodeling and functional changes. Here, we review the recent literature on the alterations in small and large arteries in hypertension. We discuss the possible mechanisms underlying these abnormalities and we explain how they accompany and often precede hypertension. Finally, we propose an integrated pathophysiological approach to better understand how the cross-talk between large and small artery changes interacts in pressure wave transmission, exaggerates cardiac, brain and kidney damage, and lead to cardiovascular and renal complications. We focus on patients with essential hypertension because this is the most prevalent form of hypertension, and describe other forms of hypertension only for contrasting their characteristics with those of uncomplicated essential hypertension.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice.

              Complicated abdominal aortic aneurysm (AAA) is a major cause of mortality in elderly men. Ang II-dependent TGF-beta activity promotes aortic aneurysm progression in experimental Marfan syndrome. However, the role of TGF-beta in experimental models of AAA has not been comprehensively assessed. Here, we show that systemic neutralization of TGF-beta activity breaks the resistance of normocholesterolemic C57BL/6 mice to Ang II-induced AAA formation and markedly increases their susceptibility to the disease. These aneurysms displayed a large spectrum of complications on echography, including fissuration, double channel formation, and rupture, leading to death from aneurysm complications. The disease was refractory to inhibition of IFN-gamma, IL-4, IL-6, or TNF-alpha signaling. Genetic deletion of T and B cells or inhibition of the CX3CR1 pathway resulted in partial protection. Interestingly, neutralization of TGF-beta activity enhanced monocyte invasiveness, and monocyte depletion markedly inhibited aneurysm progression and complications. Finally, TGF-beta neutralization increased MMP-12 activity, and MMP-12 deficiency prevented aneurysm rupture. These results clearly identify a critical role for TGF-beta in the taming of the innate immune response and the preservation of vessel integrity in C57BL/6 mice, which contrasts with its reported pathogenic role in Marfan syndrome.
                Bookmark

                Author and article information

                Journal
                Journal of The Royal Society Interface
                J. R. Soc. Interface
                The Royal Society
                1742-5689
                1742-5662
                November 08 2017
                November 2017
                November 08 2017
                November 2017
                : 14
                : 136
                : 20170327
                Article
                10.1098/rsif.2017.0327
                5721146
                29118111
                9b395245-8311-486e-a191-42c598eb438a
                © 2017

                http://royalsocietypublishing.org/licence

                History

                Comments

                Comment on this article