74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Primer3Plus, an enhanced web interface to Primer3

          Here we present Primer3Plus, a new web interface to the popular Primer3 primer design program as an enhanced alternative for the CGI- scripts that come with Primer3. Primer3 consists of a command line program and a web interface. The web interface is one large form showing all of the possible options. This makes the interface powerful, but at the same time confusing for occasional users. Primer3Plus provides an intuitive user interface using present-day web technologies and has been developed in close collaboration with molecular biologists and technicians regularly designing primers. It focuses on the task at hand, and hides detailed settings from the user until these are needed. We also added functionality to automate specific tasks like designing primers for cloning or step-wise sequencing. Settings and designed primer sequences can be stored locally for later use. Primer3Plus supports a range of common sequence formats, such as FASTA. Finally, primers selected by Primer3Plus can be sent to an order form, allowing tight integration into laboratory ordering systems. Moreover, the open architecture of Primer3Plus allows easy expansion or integration of external software packages. The Primer3Plus Perl source code is available under GPL license from SourceForge. Primer3Plus is available at http://www.bioinformatics.nl/primer3plus.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Heat tolerance in plants: An overview

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant molecular stress responses face climate change.

              Environmental stress factors such as drought, elevated temperature, salinity and rising CO₂ affect plant growth and pose a growing threat to sustainable agriculture. This has become a hot issue due to concerns about the effects of climate change on plant resources, biodiversity and global food security. Plant adaptation to stress involves key changes in the '-omic' architecture. Here, we present an overview of the physiological and molecular programs in stress adaptation focusing on how genes, proteins and metabolites change after individual and multiple environmental stresses. We address the role which '-omics' research, coupled to systems biology approaches, can play in future research on plants seemingly unable to adapt as well as those which can tolerate climatic change. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                16 July 2015
                July 2015
                : 16
                : 7
                : 16104-16124
                Affiliations
                [1 ]Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg; E-Mails: marc.behr@ 123456list.lu (M.B.); sylvain.legay@ 123456list.lu (S.L.)
                [2 ]Groupe de Recherche en Physiologie végétale, Earth and Life Institute—Agronomy, Université catholique de Louvain, 5 (bte 7.07.13) Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
                Author notes
                [* ]Authors to whom correspondence should be addressed; E-Mails: jean-francois.hausman@ 123456list.lu (J.-F.H.); gea.guerriero@ 123456list.lu (G.G.); Tel.: +352-47-02-61-443 (J.-F.H.); +352-275-888-1 (G.G.).
                Article
                ijms-16-16104
                10.3390/ijms160716104
                4519941
                26193255
                9b4b8710-c0f4-4c57-821a-7b7d30d057dd
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 May 2015
                : 09 July 2015
                Categories
                Article

                Molecular biology
                abiotic stresses,gene expression,peroxidases,dirigent proteins,cellulose synthases,cell wall

                Comments

                Comment on this article