24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably, the YPPEFKTKL epitope shows high amino acid identity with a multipotent PADRE sequence and stimulates simultaneously the CD4+, CD8+ T cell, and a probable T regulatory response. With this approach, we advanced in the design of a NH36 polytope vaccine capable of inducing cross-protection to cutaneous leishmaniasis.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major.

          CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor. Notably, multifunctional effector cells generated by all vaccines tested are unique in their capacity to produce high amounts of interferon-gamma. These data show that the quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vaccines: correlates of vaccine-induced immunity.

            The immune system is redundant, and B and T cells collaborate. However, almost all current vaccines work through induction of antibodies in serum or on mucosa that block infection or interfere with microbial invasion of the bloodstream. To protect, antibodies must be functional in the sense of neutralization or opsonophagocytosis. Correlates of protection after vaccination are sometimes absolute quantities but often are relative, such that most infections are prevented at a particular level of response but some will occur above that level because of a large challenge dose or deficient host factors. There may be >1 correlate of protection for a disease, which we term "cocorrelates." Either effector or central memory may correlate with protection. Cell-mediated immunity also may operate as a correlate or cocorrelate of protection against disease, rather than against infection. In situations where the true correlate of protection is unknown or difficult to measure, surrogate tests (usually antibody measurements) must suffice as predictors of protection by vaccines. Examples of each circumstance are given.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy.

              Leishmaniasis is a geographically widespread severe disease, with an increasing incidence of two million cases per year and 350 million people from 88 countries at risk. The causative agents are species of Leishmania, a protozoan flagellate. Visceral leishmaniasis, the most severe form of the disease, lethal if untreated, is caused by species of the Leishmania donovani complex. These species are morphologically indistinguishable but have been identified by molecular methods, predominantly multilocus enzyme electrophoresis. We have conducted a multifactorial genetic analysis that includes DNA sequences of protein-coding genes as well as noncoding segments, microsatellites, restriction-fragment length polymorphisms, and randomly amplified polymorphic DNAs, for a total of approximately 18,000 characters for each of 25 geographically representative strains. Genotype is strongly correlated with geographical (continental) origin, but not with current taxonomy or clinical outcome. We propose a new taxonomy, in which Leishmania infantum and L. donovani are the only recognized species of the L. donovani complex, and we present an evolutionary hypothesis for the origin and dispersal of the species. The genus Leishmania may have originated in South America, but diversified after migration into Asia. L. donovani and L. infantum diverged approximately 1 Mya, with further divergence of infraspecific genetic groups between 0.4 and 0.8 Mya. The prevailing mode of reproduction is clonal, but there is evidence of genetic exchange between strains, particularly in Africa.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/404189
                URI : http://frontiersin.org/people/u/395778
                URI : http://frontiersin.org/people/u/153206
                URI : http://frontiersin.org/people/u/165185
                URI : http://frontiersin.org/people/u/43649
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                23 February 2017
                2017
                : 8
                : 100
                Affiliations
                [1] 1Laboratório de Biologia e Bioquímica de Leishmania, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro, Brazil
                [2] 2Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro, Brazil
                [3] 3Laboratório de Imunologia Integrada, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro, Brazil
                [4] 4Programa de Pós-Graduação em Clínica Médica, Faculdade de Medicina-Hospital Universitario Clementino Fraga Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, Rio de Janeiro, Brazil
                [5] 5Faculdade de Medicina, Instituto de Investigação em Imunologia, Universidade de São Paulo (USP) , São Paulo, São Paulo, Brazil
                Author notes

                Edited by: Nahid Ali, Indian Institute of Chemical Biology, India

                Reviewed by: Owen Kavanagh, York St John University, UK; Leonardo Freire-de-Lima, Federal University of Rio de Janeiro, Brazil

                *Correspondence: Clarisa B. Palatnik-de-Sousa, immgcpa@ 123456micro.ufrj.br

                Specialty section: This article was submitted to Vaccines and Molecular Therapeutics, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.00100
                5322207
                28280494
                9b505da5-f508-4f72-a32b-613827f51692
                Copyright © 2017 Alves-Silva, Nico, Morrot, Palatnik and Palatnik-de-Sousa.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 November 2016
                : 20 January 2017
                Page count
                Figures: 10, Tables: 1, Equations: 0, References: 59, Pages: 18, Words: 13567
                Funding
                Funded by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 10.13039/501100003593
                Award ID: 310977/2014-2, 404400/2014-4
                Funded by: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro 10.13039/501100004586
                Award ID: E-26-201583/2014, E-26/111682/2013, E-26/102415/2010, E-26/201747/2015
                Categories
                Immunology
                Original Research

                Immunology
                nucleoside hydrolases,t-cell epitope vaccines,visceral and cutaneous leishmaniasis,leishmania amazonensis,padre epitopes

                Comments

                Comment on this article