1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The promise and current status of CDK12/13 inhibition for the treatment of cancer

      1 , 1 , 1
      Future Medicinal Chemistry
      Future Science Ltd

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CDK12 and CDK13 are Ser/Thr protein kinases that regulate transcription and co-transcriptional processes. Genetic silencing of CDK12 is associated with genomic instability in a variety of cancers, including difficult-to-treat breast, ovarian, colorectal, brain and pancreatic cancers, and is synthetic lethal with PARP, MYC or EWS/FLI inhibition. CDK13 is amplified in hepatocellular carcinoma. Consequently, selective CDK12/13 inhibitors constitute powerful research tools as well as promising anti-cancer therapeutics, either alone or in combination therapy. Herein the authors discuss the role of CDK12 and CDK13 in normal and cancer cells, describe their utility as a biomarker and therapeutic target, review the medicinal chemistry optimization of existing CDK12/13 inhibitors and outline strategies for the rational design of CDK12/13 selective inhibitors.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Integrated Genomic Analyses of Ovarian Carcinoma

          Summary The Cancer Genome Atlas (TCGA) project has analyzed mRNA expression, miRNA expression, promoter methylation, and DNA copy number in 489 high-grade serous ovarian adenocarcinomas (HGS-OvCa) and the DNA sequences of exons from coding genes in 316 of these tumors. These results show that HGS-OvCa is characterized by TP53 mutations in almost all tumors (96%); low prevalence but statistically recurrent somatic mutations in 9 additional genes including NF1, BRCA1, BRCA2, RB1, and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three miRNA subtypes, four promoter methylation subtypes, a transcriptional signature associated with survival duration and shed new light on the impact on survival of tumors with BRCA1/2 and CCNE1 aberrations. Pathway analyses suggested that homologous recombination is defective in about half of tumors, and that Notch and FOXM1 signaling are involved in serous ovarian cancer pathophysiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional Addiction in Cancer.

            Cancer arises from genetic alterations that invariably lead to dysregulated transcriptional programs. These dysregulated programs can cause cancer cells to become highly dependent on certain regulators of gene expression. Here, we discuss how transcriptional control is disrupted by genetic alterations in cancer cells, why transcriptional dependencies can develop as a consequence of dysregulated programs, and how these dependencies provide opportunities for novel therapeutic interventions in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A chemical switch for inhibitor-sensitive alleles of any protein kinase.

              Protein kinases have proved to be largely resistant to the design of highly specific inhibitors, even with the aid of combinatorial chemistry. The lack of these reagents has complicated efforts to assign specific signalling roles to individual kinases. Here we describe a chemical genetic strategy for sensitizing protein kinases to cell-permeable molecules that do not inhibit wild-type kinases. From two inhibitor scaffolds, we have identified potent and selective inhibitors for sensitized kinases from five distinct subfamilies. Tyrosine and serine/threonine kinases are equally amenable to this approach. We have analysed a budding yeast strain carrying an inhibitor-sensitive form of the cyclin-dependent kinase Cdc28 (CDK1) in place of the wild-type protein. Specific inhibition of Cdc28 in vivo caused a pre-mitotic cell-cycle arrest that is distinct from the G1 arrest typically observed in temperature-sensitive cdc28 mutants. The mutation that confers inhibitor-sensitivity is easily identifiable from primary sequence alignments. Thus, this approach can be used to systematically generate conditional alleles of protein kinases, allowing for rapid functional characterization of members of this important gene family.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Future Medicinal Chemistry
                Future Medicinal Chemistry
                Future Science Ltd
                1756-8919
                1756-8927
                January 2021
                January 2021
                : 13
                : 2
                : 117-141
                Affiliations
                [1 ]Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
                Article
                10.4155/fmc-2020-0240
                33295810
                9b590990-35a5-4d17-b22f-46b706e892b5
                © 2021
                History

                Comments

                Comment on this article