34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular pathways of nonalcoholic fatty liver disease development and progression

      , ,
      Cellular and Molecular Life Sciences
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nonalcoholic fatty liver disease (NAFLD) is a main hepatic manifestation of metabolic syndrome. It represents a wide spectrum of histopathological abnormalities ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) with or without fibrosis and, eventually, cirrhosis and hepatocellular carcinoma. While hepatic simple steatosis seems to be a rather benign manifestation of hepatic triglyceride accumulation, the buildup of highly toxic free fatty acids associated with insulin resistance-induced massive free fatty acid mobilization from adipose tissue and the increased de novo hepatic fatty acid synthesis from glucose acts as the "first hit" for NAFLD development. NAFLD progression seems to involve the occurrence of "parallel, multiple-hit" injuries, such as oxidative stress-induced mitochondrial dysfunction, endoplasmic reticulum stress, endotoxin-induced, TLR4-dependent release of inflammatory cytokines, and iron overload, among many others. These deleterious factors are responsible for the triggering of a number of signaling cascades leading to inflammation, cell death, and fibrosis, the hallmarks of NASH. This review is aimed at integrating the overwhelming progress made in the characterization of the physiopathological mechanisms of NAFLD at a molecular level, to better understand the factor influencing the initiation and progression of the disease.

          Related collections

          Most cited references185

          • Record: found
          • Abstract: found
          • Article: not found

          Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis.

          We report here that BID, a BH3 domain-containing proapoptotic Bcl2 family member, is a specific proximal substrate of Casp8 in the Fas apoptotic signaling pathway. While full-length BID is localized in cytosol, truncated BID (tBID) translocates to mitochondria and thus transduces apoptotic signals from cytoplasmic membrane to mitochondria. tBID induces first the clustering of mitochondria around the nuclei and release of cytochrome c independent of caspase activity, and then the loss of mitochondrial membrane potential, cell shrinkage, and nuclear condensation in a caspase-dependent fashion. Coexpression of BclxL inhibits all the apoptotic changes induced by tBID. Our results indicate that BID is a mediator of mitochondrial damage induced by Casp8.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis.

            Nonalcoholic steatohepatitis (NASH) may present with increased hepatic fibrosis progressing to end-stage liver disease. No factors that determine increasing fibrosis and histologically advanced disease have been recognized, thus, liver biopsy is recommended in all patients for diagnosis and prognosis. Our aim was to identify independent predictors of severe hepatic fibrosis in patients with NASH. One hundred and forty-four patients were studied. All patients underwent liver biopsy. Clinical and biochemical variables were examined with univariate and multivariate analysis. Thirty-seven (26%) patients had no abnormal fibrosis, 53 (37%) had mild fibrosis, 15 (10%) had moderate fibrosis, 14 (10%) had bridging fibrosis, and 25 (17%) had cirrhosis. In multivariate analysis, older age (P =. 001), obesity (P =.002), diabetes mellitus (P =.009), and aspartate transaminase/alanine transaminase (AST/ALT) ratio greater than 1 (P =.03) were significant predictors of severe liver fibrosis (bridging/cirrhosis). Body mass index (P =.003) was the only independent predictor of the degree of fat infiltration. Increased transferrin saturation correlated positively with the severity of fibrosis (P =.02) in univariate analysis, and there was a trend for more female patients among those with more advanced fibrosis (P =. 09). However, iron studies or gender were not significant when controlled for age, obesity, diabetes, and AST/ALT ratio. In conclusion, older age, obesity, and presence of diabetes mellitus help identify those NASH patients who might have severe liver fibrosis. This is the subgroup of patients with NASH who would be expected to derive the most benefit from having a liver biopsy and considering investigational therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonalcoholic fatty liver disease: pathology and pathogenesis.

              Nonalcoholic fatty liver disease (NAFLD) is recognized as the leading cause of chronic liver disease in adults and children. NAFLD encompasses a spectrum of liver injuries ranging from steatosis to steatohepatitis with or without fibrosis. Fibrosis may progress to cirrhosis and complications including hepatocellular carcinoma. Histologic findings represent the complexity of pathophysiology. NAFLD is closely associated with obesity and is most closely linked with insulin resistance; the current Western diet, high in saturated fats and fructose, plays a significant role. There are several mechanisms by which excess triglycerides are acquired and accumulate in hepatocytes. Formation of steatotic droplets may be disordered in NAFLD. Visceral adipose tissue dysfunction in obesity and insulin resistance results in aberrant cytokine expression; many cytokines have a role in liver injury in NAFLD. Cellular stress and immune reactions, as well as the endocannabinoid system, have been implicated in animal models and in some human studies.
                Bookmark

                Author and article information

                Journal
                Cellular and Molecular Life Sciences
                Cell. Mol. Life Sci.
                Springer Nature
                1420-682X
                1420-9071
                October 20 2018
                Article
                10.1007/s00018-018-2947-0
                30343320
                9b6fc14f-7b2b-4eb4-bad1-b60d7d31d7d7
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article